
A synthetic benchmark

H J Curnow and B A Wichmann
Central Computer Agency, Riverwalk House, London SW1P 4RT
National Physical Laboratory, Teddington, Middlesex TW11 OLW

Computer Journal, Vol 19, No 1, pp43-49. 1976

Abstract

A simple method of measuring performance is by means of a benchmarkpro-
gram. Unless such a program is carefully constructed it is unlikely to be typical
of the many thousands of programs run at an installation. An example benchmark
for measuring the processor power of scientific computers is presented: this is
compared with other methods of assessing computer power. (Received December
1974)

An important characteristic of computers used for scientific work is the speed of
the central processor unit. A simple technique for comparing this speed for a variety
of machines is to time some clearly defined task on each one. Unfortunately the ratio
of speeds obtained varies enormously with the nature of the task being performed.
If the task is defined informally in words, large variations can be caused by small
differences in the tasks actually performed on the machines. These variations can be
largely overcome by using a high level language to specify the task. An additional
advantage of this method is that the efficiency of the compiler and the differences in
machine architecture are automatically taken into account. In any case, most scientific
programming is performed in high level languages, so these measurements will be a
better guide to the machine’s capabilities than measurements based on use of low level
languages.

An example of the use of machine-independent languages to measure processing
speed appears in Wichmann [7] which gives the times taken in microseconds to execute
42 basic statements in ALGOL 60 on some 50 machines. The timeswere measured by
placing each statement in a loop executed sufficiently oftento give a reasonable interval
to measure. The time for the statement is found by taking fromthis interval the same
measurement with a dummy statement and dividing by the number of repetitions. The
two thousand or so time measurements provide a lot of information about the various
implementations of ALGOL 60 but do not directly give a performance measure. With
basic statement times for only two machines, the average of the 42 ratios between the
times provides a simple comparative measure. This technique can be generalised by
assuming that the timesTij for a statementi (i = 1 to n) on machinej (j = 1 to m)
satisfies

Tij ≈ Si × Mj

whereSi is a time depending only upon the statement andMj depends only upon
the machine (arbitrarily take one machine as unity). A least-squares fitting process
gives theSi andMj from the times (see [8], page 70, for details). TheMj provide a
comparative measure without having to assign weights to theindividual statements.

1



Figure 1: Some interpretive instruction counts
Whetstone Algol context Dynamic Static
instruction frequency per frequency per

thousand thousand
Take Integer Result Access to a simple

integer variable 129 73.5
Take Real Address Access to real array

element or storing
simple real variable 68 48.4

× Integer or Real
multiplication 36.2 18.9

Procedure entry 20.1 18.7
GoTo Accumulator goto 2 7.4
Call Block Entry to a block

other than procedure
body or for statement 0.2 1.3

IMPlies Boolean operator 0 0

1 Statistics of language usage

The comparative measure from the basic statements given above is not a true perfor-
mance indicator, because the measure does not take into account that some features of
ALGOL 60 are much more frequently used than others. Moreover, many of the basic
statements are handled with enormous variation in efficiency. For instance, executing
a block containing only a simple variable declaration produces no instructions with
the 1900 XALT compiler but involves two supervisor calls with the 360 ALGOL 60 F
compiler. This variation is illustrated in Fig. 2, which shows the times divided by the
basic machine speed (theMj) for a few of the basic statements.

Weights for the basic statements must be based upon statistics of language usage.
Such information has been collected at NPL and Oxford University from 949 programs
(Wichmann [6]). In the Whetstone system (Randell and Russell, [3]) the ALGOL pro-
gram is first translated into an intermediate code which is then executed by an inter-
preter program. By modification of the translator and interpreter programs both static
and dynamic frequency counts of some 124 instructions were obtained. Part of this in-
formation is produced in Fig. 1. Weights for the basic statements have been calculated
from these statistics to give a performance measure similarto the Gibson mix.

The ALGOL statement mix has a number of disadvantages. Firstly, it is not always
easy to obtain in one program sufficiently accurate processor times for the 42 measure-
ments. Secondly, many of the basic statements were too simple to reflect the general
language features they were supposed to represent. The mostobvious case of this was
that constant subscripts were used in the array accessing statements. The program con-
taining the statements was too simple to be typical of scientific programs in general
and in consequence an optimising compiler could perform better than on average pro-
grams. Fortunately, moving code out of loops and similar extensive optimisation is
rarely performed by ALGOL 60 compilers and hence the technique was viable when
confined to that language.

A single program more typical of ALGOL usage was therefore required to measure
processor speed. Such programs are called synthetic benchmarks.

2



Figure 2: Variation in performance of ALGOL basic statements

2 The design of the benchmark

The design of the program was a compromise between requirements for simplicity and
complexity. The program had to be simple enough to be easily transferred from one
machine to another and translated into different languages. It also had to be possible
to produce the Whetstone intermediate code, calculate the frequencies of the differ-
ent instructions and match them to the available statistics. One simple program was
constructed using the basic statements described above, but when this was, translated
into FORTRAN and put through optimising compilers, large parts of the program were
not executed because they were not logically necessary. Less dramatically but also of
significance such a compiler could make a simple program run at an untypically high
speed by using the fast registers as temporary data stores. Thus it became apparent that
the program should be complex enough to seem typical when presented to an intelligent
compiler. It was impossible to meet this requirement completely because the necessary
information about program structure was not available, andthe architecture of comput-
ers is so diverse. The best course to follow appeared to be to ensure that the program
could not be logically optimised and to hope that by writing code which looked natural
the use of fast registers and other hardware features would be approximately correct.
The program would then provide a useful measure of performance with well written
source code. Language peculiarities were to be avoided so that the program would be
useful for comparing languages having a similar subset.

Thus one is led to having a number of modules of different types using different
language features, each executed many times by inclusion within a for loop. Each
module should represent a genuine calculation, preferablyproducing different results

3



on each execution but capable of indefinite repetition without leading to numeric over-
flow or other mishap. The structure of the modules and the number of repetitions of
each should be chosen to match the frequencies of the Whetstone instructions which
would be generated by the benchmark program to the instruction frequencies obtained
from the 949 programs.

The choice of the method of fitting the benchmark program to the analysis is an
important matter. As many instructions as possible should be fitted by the choice of
a comparatively small number of module repetition counts. One method would be
to minimise the root mean square difference between the instruction frequencies in
the benchmark and in the analysis. A refinement would be to weight the instructions
according to their frequency or to their execution times, thus giving greater weight to
fitting the more important instructions. The modules themselves would be redesigned
until the fit obtained by the minimisation process was a good one. The methods actually
used will be described later.

3 Construction of the program

3.1 The modules

The computations to be carried out should be genuine calculations producing differ-
ent results on each execution, and capable of indefinite repetition. For the elementary
mathematical operations a set of transformation statements was investigated. The state-
ments in ALGOL were:

x1 := (x1 + x2 + x3 − x4) × 0.5;

x2 := (x1 + x2 − x3 + x4) × 0.5;

x3 := (x1 − x2 + x3 + x4) × 0.5;

x4 := (−x1 + x2 + x3 + x4) × 0.5;

This transformation provides a convergent sequence ofxi values which theoreti-
cally tend to the solution

x1 = x2 = x3 = x4 = 1.0

but the convergence for approximate computation and for other values of thex’s are
of interest. It was found that the transformation is convergent for all values of thex’s,
but to allow for machine accuracy limits and to provide some changing computations
the factor 0.5 in the statements was replaced by 0.499975. Anarbitrary choice of
initial values such asx1 = 1.0, x2 = x3 = x4 = −1.0 gives a plausible sequence
of calculations. This scheme of computation was used as the basis for three modules
(Nos. 1. 2 and 3) in which the variables were respectively simple identifiers, array
elements and elements of an array parameter of the procedurepa (see program text in
the Appendix). A programmed loop was included inpa to control the proportion of
parameter references to procedure calls. Other almost stationary transformations were
used in Modules Nos. 7 and 11. The first used trigonometric functions as follows:

x := t × arctan(2.0 × sin(x) × cos(x)/(cos(x × y) + cos(x − y) − 1.0));

y := t × arctan(2.0 × sin(y) × cos(y)/(cos(x + y) + cos(x − y) − 1.0));

4



With a value oft = 0.499975 and starting withx = y = 0.5 these almost transform
x and y into themselves, and give a slowly varying calculation. This module was
designed to give the correct proportion of calls tosin or cosandarctan and to avoid
carrying forward common sub-expressions. The second, module No. 11, exercised the
other standard functions in a single transformation:

x := sqrt(exp(ln(x)/t1));

With t = 0.50025 and an initial value ofx = 0.75 a stable series of values of
x is obtained with repeated execution of this statement. Notethat in these modules
multiplication or division was chosen so that overall therewould be a good fit to the
statistics.

Conditional jumps were exercised in Module No. 4 by a set of conditional state-
ments. Starting from an initial value ofj = 1, repeated execution of this group of
statements alternatesj between 0 and 1, and each condition is alternately true and
false.

Integer arithmetic and array addressing were used in ModuleNo. 6 in a simple
calculation. With initial values ofj = 1, k = 2, l = 3 these values remain unchanged
with repeated executions, but this is unlikely to be detected by the compiler. Procedure
calls and parameter addressing were exercised in Module No.8 by a procedure (p3)
with three parameters. The global variablet has the same value as in other modules.
Values of the actual parameters corresponding tox andy are unchanged.

Array references appeared in Module No. 9 which was made the body of a param-
eterless procedure (p0) to increase the number of procedure calls. Global variables are
set up asj = 1, k = 2, l = 3, el[l] = 1.0, e1[2] = 2.0,e1[3] = 3.0, and these values are
permuted each time the module is executed.

Finally, in Module No. 10, simple integer arithmetic was used. With initial values
of j = 2,k = 3, this interchanges values with each execution.

4 Fitting

Each of the modules was translated into Whetstone instructions, including the coding
of the containingfor loop, using a vocabulary of some 40 different instructions.To
simplify the task of fitting their frequencies to the analysis, and also to take account of
some of the other instructions not directly represented in the benchmark, some com-
binations were made to reduce the number of fitted values to 25. These accounted for
over 95% of the instructions executed in the analysed programs. The problem was
thus to choose the execution frequencies of the ten modules so that the 25 instruction
frequencies matched. The modules had been designed with this fit in mind, but there
would not be an exact solution. The first approach was to obtain a least-squares fit
using a standard method. This solution suffered from two disadvantages. Firstly, it
gave negative frequencies for some of the modules, which would have been difficult
to implement, and secondly it gave equal importance to fitting each of the instructions.
The first problem was overcome by using a direct search methodwith the range of the
parameters restricted to be positive, taking the previously calculated result as a starting
point. The second was overcome by allotting to each instruction a total time, which
was the product of the instruction frequency and an instruction time. The instruction
times were derived from the basic statement times, which in turn were derived from
measurements on a large number of machines [6]. Using these times, a weighted root

5



mean square deviation of the benchmark from the analysis wasdefined, and this was
minimised by the direct search method. The result was that two of the modules, num-
bers 1 and 10, were eliminated by the restriction to positivefrequencies. The remaining
eight modules gave a weighted root mean square deviation over the 25 instructions of
15% which was considered satisfactory. The total nominal time of 5.93 seconds com-
pared with a target of 6.08, and the total instruction count of 963 thousand compared
with the target of one million.

Having decided upon the modules and their relative frequencies the whole program
could be assembled. The modules are contained within a framework which controls
the number of executions of each and provides for the output of results. This output is
only required to ensure that the calculations are logicallynecessary; it is not intended to
represent the output from a typical program. The execution frequency of each module
is proportional to the input value ofi and the scaling factors are such that a value of
i = 10 gives a total weight to the modules corresponding to one million Whetstone
instructions. Although Modules Nos. 1 and 10 have zero frequencies they have been
retained in the program because study of the object code theyproduce might be of
interest. For accurate measurements the effect of the framework, and if necessary of
compilation and loading, may be eliminated by performing several runs with different
values ofi. From these results the speed of the machine may be expressedin Whetstone
instructions per second.

5 Results from several machines

Using the benchmark described above, a survey was made of theexecution speeds
which might be expected from one machine using different languages, compilers and
precisions. The object was partly to obtain information about the languages and their
implementations and partly to study the usefulness of the synthetic benchmark tech-
nique for such a study.

The first machine studied was an IBM 360/65. The operating system provided
information about CPU time used (in micro-hours), peripheral channel program exe-
cution and core occupied. Object code listings were obtained from all the compilers,
except the ALGOL one. Brief descriptions of the compilers follow:

ALGOL F: The standard IBM ALGOL compiler. Known
to produce inefficient code.

FORTRAN G: The standard IBM FORTRAN medium
sized compiler.

FORTRAN H: The superior IBM FORTRAN compiler.
Produces better code than G at the expense of
compilation time and does logical
optimisation.

PL/I F: The standard IBM PL/I compiler.
PL/I OPT: The new IBM PL/l optimising compiler.

Controlling parameters were chosen to give the maximum execution speed of the
compiled program, and in the case of ALGOL a compiler option also controlled the
precision of the representation of real quantities. The ALGOL program was used as
described above with insignificant changes to the input and output procedures to suit
the IBM implementation. For FORTRAN an equivalent program was written to per-
form the same calculations using similar language features. These do not give exactly

6



Figure 3:360/65 execution speeds (speeds in thousands of Whetstone instructions per
second)

Representation Algol FORTRAN PL/I
real integer F G H F OPT

6HEX 31BIN 72 430 409 372 443
5211

14HEX 31BIN 652 321 421 302 335
6HEX 6DEC - - - 163 262
6HEX 15BIN - 370 - - -

the same facilities as in ALGOL but the differences are probably not significant in most
applications. The types of the variables were defined eitherimplicitly by their identi-
fiers according to the FORTRAN convention, or by suitable declarations; the names
of the standard functions were also modified as necessary. For PL/I the program was
derived from the ALGOL version and was very similar to it.

Various internal representations of real and integer quantities were used. Real quan-
tities were either short or long precision floating point (6 hexadecimal digits, 6HEX or
14 hexadecimal digits, 14HEX). Integer quantities were either whole-word or half-
word binary (31 bits, 31BIN or 15 bits, 15BIN) or nine digit packed decimal (9DEC).
The execution speeds of the programs produced by the variouscompilers with different
combinations of these representations are given in Fig. 3; the speeds quoted are in thou-
sands of Whetstone instructions per second. The program had been designed to min-
imise the improvement which an optimising compiler could make by re-arrangement
of the logic, and examination of the object code showed that this had been achieved.
The two figures shown for FORTRAN H with standard precision refer to no and full
optimisation. The better performances of H compared with G and of PL/I OPT com-
pared with PL/I F were the result of the use of fewer machine instructions and, to a
lesser extent, of faster ones; H was particularly good at holding values temporarily in
registers. Without the object code listing the reasons for the slow performance of AL-
GOL could not be determined, but it is known that there is an array check on each array
access which was not made in FORTRAN or PL/I as run. Also the procedure call and
parameter checking and passing mechanisms were more complex.

The use of long precision (14HEX) instead of short (6HEX) caused a 20-25%,
loss of speed in both FORTRAN and PL/I. This could have been caused by extra ma-
chine instruction times for double-length working and by extra computations needed
for precision in standard functions. In ALGOL the proportional reduction in speed
was less, but the increase in execution time was about doublethat with the other lan-
guages. Using decimal (9DEC) instead of binary (31BIN) representation for integers
in PL/I had a severe effect, particularly with the F compiler. This might be important
since decimal representations could inadvertently resultfrom such simple declarations
as FIXED, which would give 5DEC or REAL(9,2). In comparing the languages it must
be remembered that although the programs were made as nearlyequivalent as possible,
faster execution was obtained at the expense of programminglanguage power, run-time
error checks and compilation time. The ALGOL compiler took only one tenth of the
CPU time taken by the PL/I Optimizer, but produced a program that took six times as
long to execute. The program is not, however, intended to provide a good measure of
compilation speed.

The other machine studied was an ICL 1904A. Programs were runfrom a MOP

7



Figure 4:ICL 1904A execution speeds (speeds in thousands of Whetstone instructions
per second)

Algol FORTRAN
XALT XFAT XFEW

Trace single single double single double
level

0 125 159 20.8 192 21
1 58 91 19.2 100 19
2 52 17 9.4 59 17.5
3 55 - - - -

terminal under George 3 and the mill-time in seconds and the core occupied were
obtained from the system messages. Measurements of simple programs on the same
machine had shown agreement with the quoted instruction times, so the conversion
factor to true seconds was probably correct. The compilers were all standard ICL
products for ALGOL and FORTRAN:

ALGOL XALT 32K disc compiler
FORTRAN XFAT 32K disc compiler good diagnostics

XFEW 48K disc compiler optimised code

For ALGOL the program was used with only minor changes. Real quantities were
represented in the machine to standard single precision, 37binary digits floating point.
For FORTRAN two versions were used which gave single and double (74 binary digit)
precisions. The execution speeds of the programs are given in Fig. 4. In comparing
the ALGOL and FORTRAN speeds it is necessary to consider the different facilities
provided at run for error checking and for tracing program flow. These are controlled
by TRACE statements which direct the compilers and come in different combinations
in the two languages. At the lowest level, TRACE 0, both languages are blind to all
but the grossest errors; also at the TRACE 2 level the facilities are roughly comparable.
Table 3 shows the speeds of execution of programs compiled with different compilers
on the same machine, at different TRACE levels. The main degradation in ALGOL
comes with TRACE 1 which adds frequent overflow and array subscript checks; the
error traceback with TRACE 2 only adds a small overhead to thealready complex
ALGOL procedure call mechanism. In FORTRAN both steps involve heavy penalties;
TRACE 1 gives a subroutine error traceback while TRACE 2 gives overflow checks
and a detailed statement traceback. This last seems a large price to pay if all one
requires are the overflow and array subscript checks which come in the same package
deal; using explicit program checks would be preferable.

5.1 A comparison of four performance measures

The four performance measures considered are:

1. The Gibson mix. This is a weighted average of instruction times, reflecting us-
age expected of scientific work. The values were calculated by the Technical
Services Division of the CCA and include an additional allowance for the ad-
dress structure and the number of registers.

8



Figure 5: Four measures compared

9



2. The ALGOL statement mix.

3. The ALGOL synthetic benchmark.

4. The FORTRAN synthetic benchmark.

All these measures are true performance indicators in the sense that they take into
account the relative usage of the various instruction typesin a machine. These are in
low-level terms in the Gibson mix whereas the other three areexpressed in high-level
language form.

The four measures can be compared directly in diagrammatic form as in Fig. 5.
The scales are logarithmic to include computers of widely differing powers. In any
case, hardware and software improvements tend to yield a percentage rather than an
absolute gain. Since the units of each measurement are more or less arbitrary, the
scales have been adjusted vertically to correspond as closely as possible. (In fact, the
average gradient of the lines joining each measure is zero.)

One must add a note of caution about the actual values plotted. With four measures
and twelve computers, 48 measurements are needed. However,to display as many
machines as possible, when three measures were available the fourth has been esti-
mated (in seven cases). Also, the compiling options used on different machines on the
same range or with the two ALGOL programs have not always beenthe same. These
differences have arisen because of the varying choices madeat different computer in-
stallations.

Visual inspection of the diagram reveals that measurementson members of a range
of computers (using the same software) shows a similar pattern. The two ALGOL
measures are clearly more correlated than the others. The ALGOL and FORTRAN
benchmark results differ enormously in some cases by nearlya factor of three.

The correspondence between the measures can be quantified bycalculating the
average gradient of the lines joining two measures (ignoring the sign of the gradient).
This average slope corresponds to the mean difference (a ratio) between the two scales.
The six ratios are:

ALGOL — Statements ratio 1.21
Gibson — FORTRAN 1.24
Gibson — Statements 1.57
FORTRAN — Statements 1.69
Gibson — ALGOL 1.85
FORTRAN — ALGOL 2.00

Hence two computers with one twice as powerful as the other onthe FORTRAN
scale, could be the same on the ALGOL scale. For an example of this, see the KDF9
and the 360/65 values. In contrast, much smaller differences are to be expected between
the ALGOL and Statement scales.

The six ratios given above can be used to plot the distances between four points
representing the scales. With a very small amount of distortion the logarithm of these
ratios can be plotted as distance between points on a plane giving Fig. 6. This figure
again illustrates the high correlation between the ALGOL and Statement scales. The
close relationship between FORTRAN and Gibson is particularly remarkable in view
of the diverse routes by which they were derived. Note that there is a roughly linear
relationship — FORTRAN, Gibson. Statements, ALGOL. This can be seen from the
previous graph where a large number of the lines maintain a roughly constant gradient.

10



Figure 6: The relationship between the four measures

6 Limitations and applications

The benchmark program described here has been presented as amodel of the large
number of programs originally analysed. The intention is that by running it upon a new
type of machine one may learn something of the performance the machine would have
if it ran the original programs. It is not possible to validate the benchmark by direct
comparison with the original programs so one must estimate how faithful a model it is
likely to be. The performance of any machine depends upon thecharacteristics of the
stream of machine code instructions executed and the data values, so the benchmark
program must generate code which is typical from a number of aspects. This bench-
mark is probably typical in the mixture of machine code functions it exercises and in
their sequencing. For example, on the 1904A, examination ofthe object code showed
that the proportion of branch instructions was 19%, which isa reasonable figure in the
light of experience on Atlas [4].

The number of executions of each loop is high and it would havebeen better to
arrange the repeated execution of the whole program by obtaining a measurable load,
rather than increasing the repetition counts of the modulesindividually. The values
of the operands of arithmetic imistructions take varying values as the program rums,
but no attempt was made to make these representative, the main object being to avoid
repetition of a small number of values which would certainlyhave been abnormal. The
utilisation of such system features as the standard function library should be typical
but, of course, calls to the input/output system and to supervisory software are not
represented. The most important way in which this program isnot typical is in the size
of the area of store that it addresses, which is very small, both as regards data and code.
This is not significant on unsophisticated machines but becomes so when machines
with multi-level stores of various types are considered. Itmay well be true that on the
360/65 the use made by the FORTRAN H compiler of the general purpose registers
was reasonably typical, although it did manage to perform the whole of module 4 in
registers. On a machine with one or more of the various types of buffered, slaved or
virtual stores all one can say is that the program is unusually small and simple in its
patterns of access. A modified version has been produced which accesses a larger area
of store, but this must clearly be an arbitrary exercise. Whenmore is known about

11



the characteristics of programs running on these multi-level store machines it may be
possible to produce a typical program for particular types of machine. It will clearly be
impossible to produce one valid for any conceivable machine.

Despite these limitations the program described should be of some value, partic-
ularly in relation to smaller machines. It provides a measure of computer speed of
a similar level of usefulness as the Gibson mix, etc. but taking account of the actual
compilers available on the machine. It is particularly suitable on machines with unusual
architecture where the Gibson mix is difficult to interpret (e.g. KDF9. Burroughs). By
comparison with other measures it provides some inidication of the software ineffi-
ciency incurred by using the various high-level languages.The different compilers and
options can be evaluated on one machine. Another possible application for this pro-
gram would be as the processor load component in a more comprehensive total load
benchmark applied to a complete system. Although this benchmark program is of lim-
ited use, since it represents only small scientific programs, the general principles used
in its construction could be applied more widely. The chief obstacle to progress here is,
as in other areas of computer performance measurement, the lack of information about
the characteristics of real programs.

Appendix: The Benchmark

begin
real xl, x2, x3, x4, x, y, z, t, t1, t2;
array e1[1:4];
integer i, j, k, l, nl, n2, n3, n4, n5, n6, n7, n8, n9, n10,n11;
procedure pa(e);

array e;
begin
integer j;
j := 0;

lab:
e[1] := (e[l] + e[2] + e[3] - e[4]) ×t;
e[2] := (e[l] + e[2] - e[3] + e[4]) ×t;
e[3] := (e[l] - e[2] + e[3] + e[4]) ×t;
e[4] := (-e[l] + e[2] + e[3] + e[4]) / t2;
j := j + 1;
if j < 6 then

goto lab;
end procedure pa;

procedure p0;
begin
e1[j] := e1[k];
e1[k] := e1[l];
e1[l] := e1[j];
end procedure p0;

procedure p3(x, y, z);
value x, y;
real x, y, z;
begin
x := t×(x + y);

12



y := t×(x + y);
z := (x + y)/t2;
end procedure p3;

procedure pout(n, j, k, x1, x2, x3, x4);
value n, j, k, x1, x2, x3, x4;
integer n, j, k;
real x1, x2, x3, x4;
begin
outreal(1, n);
outreal(1, j);
outreal(1, k);
outreal(1, x1);
outreal(1, x2);
outreal(1, x3);
outreal(1, x4);
end procedure pout;

comment initialise constants;
t := 0.499975;
t1 := 0.50025;
t2 := 2.0;
comment read value of i, controlling total weight: if i=10 the

total weight is one million Whetstone instructions;
inreal(2, i);
n1 := 0;
n2 := 12×i;
n3 := 14×i;
n4 := 345×i;
n5 := 0;
n6 := 210×i;
n7 := 32×i;
n8 := 899×i;
n9 := 616×i;
n10 := 0;
n11 := 93×i;
comment module 1: simple identifiers;
x1 := 1.0;
x2 := x3 := x4 := -1.0;
for i := 1 step 1 until n1 do

begin
x1 := (x1 + x2 + x3 - x4)×t;
x2 := (x1 + x2 - x3 + x4)×t;
x3 := (x1 - x2 + x3 + x4)×t;
x4 := (-x1 + x2 + x3 + x4)×t;
end module 1;

pout(n1, n1, n1, x1, x2, x3, x4);
comment module 2: array elements;
e[1] := 1.0;
e[2] := e[3] :=e[4] :=1.0;
for i := 1 step 1 until n2 do

begin

13



e1[1] := (e1[1] + e1[2] + e1[3] - e1[4]) ×t;
e1[2] := (e1[1] + e1[2] - e1[3] + e1[4]) ×t;
e1[3] := (e1[1] - e1[2] + e1[3] + e1[4]) ×t;
e1[4] := (-e1[1] + e1[2] + e1[3] + e1[4]) ×t;
end module 2;

pout(n2, n3, n2, e1[1], e1[2], e1[3], e1[4]);
comment module 3: array as parameter;
for i := 1 step 1 until n3 do

pa(e1);
pout(n3, n2, n2, e1[1], e1[2], e1[3], e1[4]);
comment module 4: conditional jumps;
j := 1;
for i := 1 step 1 until n4 do

begin
if j = 1 then

j := 2
else

j := 3;
if j > 2 then

j := 0
else

j := 1;
if j < 1 then

j := 1
else

j := 0;
end module 4;

pout(n4, j, j, x1, x2, x3, x4);
comment module 5: omitted;
comment module 6: integer arithmetic;
j := 1;
k := 2;
l := 3;
for i := 1 step 1 until n6 do

begin
j := j × (k − j) × (l − k);
k := l × k − (l − j) × k;
l := (l − k) × (k + j);
e1[l − 1] := j + k + l;
e1[k − 1] := j × k × l;
end module 6;

pout(n6, j, k, e1[1], e1[2], e1[3], e1[4]);
comment module 7: trig. functions;
x := y := 0.5;
for i := 1 step 1 until n7 do

begin
x := t × arctan(t2 × sin(x) × cos(x)/

(cos(x + y) + cos(x − y) − 1.0));
y := t × arctan(t2 × sin(y) × cos(y)/

(cos(x + y) + cos(x − y) − 1.0));

14



end module 7;
pout(n7, j, k, x, x, y, y);
comment module 8: procedure calls;
x := y := z := 1.0;
for i := 1 step 1 until n8 do

p3(x, y, z);
pout(n8, j, k, x, y, z, z);
comment module 9: array references;
j := 1;
k := 2;
l := 3;
e[1] := 1.0;
e[2] := 2.0;
e[3] := 3.0;
for i := 1 step 1 until n9 do

p0;
pout(n9, j, k, e1[1], e1[2], e1[3], e1[4]);
comment module 10: integer arithmetic;
j := 2;
k := 3;
for i := 1 step 1 until n10 do

begin
j := j + k;
k := j + k;
j := k − j;
k := k − j − j;
end module 10;

pout(n10,j, k, x1, x2, x3, x4);
comment module 11: standard functions;
x := 0.75;
for i := 1 step 1 until n11 do

x := sqrt(exp(ln(x)/t1));
pout(n11,j, k, x, x, x, x);
end

FORTRAN and PL/I versions of this program are available on request.

References

[1] Heinhold, J (1962) and Bauer, F.L. (Editors),Fachbegriffe der Programmierung-
stechnik.Ansgearbeitet vom Fachausschatz Programmieren der Gesellshaft f̈ur
Angewandte Mathematik und Mechanik (GAMM) Oldenbourg, Munchen.

[2] KNUTH, D. E. (1971). An emipirical study of FORTRAN programs,Software
Practice and Experience, Vol. 1, No. 2, pp. 105-133.

[3] RANDELL, B, and RUSSELL, L. J. (1964).ALGOL 60 Implementation. APIC
Studies in Data Processing No. 5, London. Academic Press.

[4] SUMNER, F. H. (1974). Measurement techniques in computer hardware design,
State of the Art Report No. 18, pp. 367-390, Infotech, Maidenhead.

15



[5] WICHMANN, B. A. (1969). A comparison of ALGOL 60 execution speeds, Na-
tional Physical Laboratory Report CCU3.

[6] WICHMANN, B. A. (1970). Some statistics from ALGOL programs. National
Physical Laboratory CCU 11.

[7] WICHMANN, B. A. (1973a). Basic statement times for ALGOL 60, National
Physical Laboratory Report NAC42.

[8] WICHMANN, B. A. (1973b). ALGOL 60 Compilation and Assessment, Aca-
demic Press, London.

A Document details

Partly converted just before I retired, but finished in October 2001. The original was
set in two columns. Other small changes have been made to reflect the default LATEX
style. Typo corrected, July 2010.

16


