
A Parametrizable Hybrid Stack-Register Processor as Soft

Intellectual Property Module

Peter Lüthi, Thomas Röwer, Manfred Stadler, Daniel Forrer, Stefan Moscibroda, Norbert Felber,
Hubert Kaeslin, Wolfgang Fichtner

Integrated Systems Laboratory, Swiss Federal Institute of Technology, Zürich, Switzerland

Abstract— Hardware/Software Co-Design usually encoun-
ters serious problems to guarantee strong real-time con-
straints while serving many interrupt routines. We present
an enhanced register-based RISC processor, which is capa-
ble of launching every interrupt routine within two clock
cycles. This processor is implemented as soft IP-Module
and features a customizable instruction set, extensive pa-
rameterization, and a synthesis model with separate core
and interfaces. An automatic derivation of adequate test
vectors from the current parameter setting verifies the
correct functionality.

I. Introduction

The design of integrated circuits is currently subject to
extensive changes. Until now, project-specific code has
been written for every new design. This results in highly
optimized code for the target application, but also leads to
inacceptable development time, especially for large designs.
Since time to market and product lifetime are shrinking
while, at the same time, circuit complexity is growing, the
traditional way of designing integrated circuits has to be
altered to achieve higher efficiency than before. As the
complexity of circuits increases, there is urgent need for
new design methodologies, that allow fast development of
demanding applications up to complete system-on-a-chip
integrations [1][2].

One possibility to cope with this efficiency problem is
the use of Intellectual Property (IP) Modules or Virtual
Components (VC). Quick and easy adaptations on the
reusable blocks speeds up system design and provides
more time for thorough testing, an important issue in
cost-intensive chip design.

Another new trend in system design is the inclusion
of programmable parts into the ASIC. This is commonly
termed Hardware/Software Co-Design, which means that
a system functionality is partitioned into hardware and
software running on an embedded processor. This solution
offers great flexibility by allowing fast alterations in func-
tionality if project or system specifications are to change.
Although software on embedded systems is very conve-
nient, it poses numerous problems in conjunction with hard
real-time requirements. Demanding telecommunication
applications ask among others for an interrupt latency
which is hard to obtain from traditional microprocessors.

This paper presents an embedded processor with a
new approach in processor architecture to guarantee such
demanding real-time constraints. Section II elaborates

The authors want to thank KTI (Swiss Commission for Technology
and Innovations) for funding this project.

on the processor-specific IP requirements, introduces the
architecture of the processor and its parameterization.
Section III explains the functional verification flow for
the IP-Module. In Section IV, we give an impression of
the area occupation for different parameter sets and the
details of our test integration. In the final section, we
summarize the results of our work and discuss possible
future enhancements.

II. Project ”SILVERBIRD”

A. IP requirements

Designing an embedded processor as a soft IP-Module
engenders different design problems not encountered during
the design of an application-specific integrated circuit
(ASIC).

First of all, the user needs the ability to decide whether
the IP-Module meets his requirements at the beginning
of his project. Therefore all functionality and all limits
concerning the processor IP must be stated clearly.

Moreover, the designer of a processor IP-Module has to
be aware of the following issues:
1. A microprocessor IP has to be highly adaptable to
satisfy multiple application requirements. Qualitative
customization of the instruction set as well as quantita-
tive customization of hardware parameters are important
prerequisites.
2. An IP-Module can be plugged into different system envi-
ronments. To make this possible, either various communi-
cation protocols must be supported by the IP itself or the
possibility for the user to implement application-specific
interfaces has to be clearly defined.
3. The processor IP-Module has to provide a convenient
environment to allow for fast functional verification. It is
highly recommended that this feature is already available
during implementation time to verify the hardware/soft-
ware concept and to reveal possible conceptual errors.
4. The ability to support a high-level programming lan-
guage to allow quick adaptations on the software-based
functionality. This feature greatly simplifies future soft-
ware enhancements.

B. The ”SILVERBIRD” IP-Module

During the design of our processor IP, close attention has
been paid to all particularities of IP-Module design. We
have realized a processor IP-Module featuring the following
items:



Fig. 1. Architecture of the ”SILVERBIRD” RISC processor

• Qualitative adaptability: The functionality of the pro-
cessor IP can be modified by customizing the instruction
set.
• Quantitative parametrizability: Only the basic archi-
tecture of the processor core is fixed: Two separate
ALUs for data and address computations, register-based
architecture, and Harvard memory organization. On the
other hand, all key parameters of this architecture are
adaptable to the current application’s needs. Fig. 2 shows
the customizable parameters in Greek letters.
• Quick interface adaptations to comply with the target
specifications. To achieve a clearly structured IP, the pro-
cessor core and the system interfaces have been separated.
• The register-based architecture simplifies the implemen-
tation of a high-level programming language compiler.
• An assembler is part of the IP. It is self-parameterizing
based on the parameters configured for the RTL model.

C. The processor architecture

To meet the demanding requirements of managing high
interrupt loads and being parametrizable, we have decided
to combine the advantages of a stack architecture with
the ones of a register-based approach. Therefore, the
general purpose registers of our processor are implemented
as top-of-stack registers. In case of an interrupt, precious
processing time can be saved by just pushing the current
register contents on the stack. The maximum interrupt
latency achieved by our architecture is two clock cycles.
To obtain maximum processor performance, neither the
pipeline is ever flushed nor any no-operation cycles are
performed.

A striking argument against a pure stack processor was
the need for compiler-compatibility: A compiler for a stack
architecture is difficult to implement because it always
needs to trace the exact position of each register [3][4].
As a consequence, the entire stack has to be controlled

by ”push” and ”pop” instructions. Our solution provides
a fixed amount of general purpose registers for every
interrupt level. The whole stack control is done by the
processor itself and requires no software-based ”push” and
”pop” operations. This organization is easy to support by
a high-level compiler since the compiler does not have to
control the stack at all.

One slight disadvantage of our architecture is the large
chip area taken by the stacks, a consequence of the
traditional trade-off between speed and area. But this
can be avoided by implementing an interface from the
top-of-stack registers to an on-chip RAM and spilling the
major part of the stack contents to the RAM. It will result
in more control logic and maybe in lower performance,
unless the user builds a complex control logic to cope with
the slow RAM. This way to save chip area is only preferable
on large parameter values. On the other hand, decreasing
costs for chip area and even increasing integration densities
seem to justify this compromise.

Key features of the hybrid stack-register architecture of
our RISC processor ”SILVERBIRD” are:
• Separate data and instruction memory (Harvard archi-
tecture).
• Read-after-write sequences are allowed. Being able to
access the same register in consecutive order yields much
more efficient code.
• Data and address register banks have been implemented
as top-of-stack, which allows for fast interrupt launch.
• A classic four-stage pipeline. In the first stage instruc-
tions are read from the program memory (Instruction
Fetch). After decoding the instruction in stage two
(Instruction Decode), it is executed in the third stage
(Execute). In stage four, registers are updated and data
memory access takes place (Write Back).
• An additional address ALU with reduced functionality
for efficient block access operations on the data memory.
• Return addresses and condition code storage on separate
stacks.
• Parametrizable instruction set of up to 40 instructions.

D. Qualitative adaptation of the processor core

Application-specific optimization of the core’s function-
ality can be performed by selecting the number of supported
instructions ν needed for the current application from a
total set µ of 40 instructions. The hardware associated
with the unwanted instructions will be implicitly discarded
during logic synthesis. As an example, if all arithmetic
data memory address instructions are disabled and only
immediate memory access is retained, the address ALU
will be completely removed. Otherwise, with full parame-
terization, the address ALU will be inferred (shaded areas
I or II in Fig. 2).

E. Quantitative parameterization of the processor core

From the perspective of an IP user, the most significant
adaptations influencing the final chip area have to be
done by choosing the right number of general purpose
registers, as well as the required stack depths. A thorough



Fig. 2. ”SILVERBIRD” IP-Module with customizable parameters
shown as Greek letters

evaluation of the parameterization going to be used is
strongly recommended since the stacks consume most of
the processor area.

The following parameters can be varied:
1. Data Width α of the processor data path and of all data
registers.
2. Address Width β of the data memory defining the
maximum addressable memory size 2β . The value for the
address width β can range up to twice the data width
(β ≤ 2α).
3. Address Width γ of the instruction memory defining
the maximum accessible instruction memory size 2γ . The
instruction width is expressed by [5 + 2∗ceil(log2 δ) + α].
4. Number of Data Registers δ: Randomly accessible top
of data stack registers. There is no upper boundary for
this parameter, but excessive size will result in high area
occupation.
5. Number of Address Registers ε: Randomly accessible
top of address stack registers. It is either possible to
increment the address register contents directly with the
address ALU or an immediate offset can be specified within
the memory instruction.
6. Data and Address Stack Depth κ: This stack depth
defines the limit of simultaneously launched interrupt
service routines. The expression [κ∗ (δ ∗α+ε∗β)] specifies
the total number of required registers in the data and
address stacks.
7. Return Address Stack Depth π: The return address
stack depth π is dependent on the number of supported
interrupt priorities and subroutine calls and has therefore
to be adapted to the application by hand. The total
amount of return address stack registers is calculated as
γ ∗ π.

An interrupt launch is always accompanied by the start
address of the corresponding interrupt service routine. The
width of this address is equal to the instruction memory

address width γ. Therefore, the interrupt routines can be
spread over the whole program memory. The carry flag is
saved on the condition code stack during an interrupt. The
condition code stack’s depth equals the number of interrupt
priority levels κ, its width is 1 bit.

In addition, the processor supports trap instructions
with different priorities λ to allow for communication
between processor and interrupt controller. When the
processor executes a trap instruction, the corresponding
priority will be passed to the external interrupt controller.
This instruction can also be viewed as software interrupt
from the processor to the interrupt controller. Finally,
there are four different run-time exceptions: Data and
Address Stack Under- & Overflow and Return Address
Stack Under- & Overflow.

F. System interfaces

The processor IP-Module provides separate core and
system interfaces to permit for easy adaptation to the
target environment. A parametrizable data memory in-
terface with a FIFO buffer supports Asynchronous Static
RAMs. It allows memory burst writes from the processor
core to the data memory without any processor stalls.
FIFO depth, memory read latency, and write latency are
individually parametrizable. For the instruction memory,
an interface based on another Asynchronous Static RAM
is available. Interaction and data exchange between the
embedded processor and its system environment is done
by an external interrupt controller and memory-mapped
IO.

III. Functional verification

Functional verification of highly parameterized IP-
Modules poses several problems. As described in section II,
the IP-user can choose a parameter set that exactly
matches the application-specific requirements. After this
customization, the functional correctness of the IP-Module
has to be verified. Because the designer of a parametrizable
IP-Module can not provide test vectors for all possible
parameter settings, a behavioral model has to do so: The
expected responses for the synthesizable RTL model are
generated based on the current parameterization by this
behavioral model.

A suitable functional verification flow has already been
published and comprehensively discussed in [3] and [5].
Here we only want to sketch this functional verification
method. As Fig. 3 shows, the whole configuration flow
is based on one configuration package. This guarantees
consistency of the IP for synthesis and verification. An
assembler source code file is used as common starting point
for the flow consisting of the following three steps:
1. Translation of the assembler code into binary format
by the parametrizable assembler (right side of Fig. 3):
Thereby the assembler refers to the configuration package
to check the range and validity of all parameters associated
with the corresponding instructions in the assembler source
code. In case of a mismatch, an error message is reported
by the assembler. Since the assembler is entirely integrated



Fig. 3. Verification flow of the ”SILVERBIRD” IP-Module

into the verification flow, it’s correctness is implicitly
assured as well.
2. Generation of the expected responses from the assembler
source (left side of Fig. 3). A behavioral model of the
processor serves as a generator of the expected responses.
They are first converted into generic format. The be-
havioral model processes the code and generates separate
expected response files for every interface, which are used
later on for the verification of the RTL model.
3. Functional verification of the customized RTL model
(right side of Fig. 3): The binary code generated by the
assembler is passed to the RTL model, which processes
the code using the custom-specific settings. In a final step
the generated output is compared against the expected re-
sponses and test report and memory log file are generated.

IV. Comparison of various parameterization
examples and test integration

A. Configurations for the test synthesis runs

To get an impression of the area required by the pro-
cessor IP-Module, we present an evaluation of 12 different
parameter settings. For the demonstration of the effects
of both quantitative and qualitative parameterizations,
synthesis runs with different numeric parameters as well
as with full and reduced instruction set have been carried
out. Thereby the data width α was set to either 8,
16 or 32 bit and the address width β to 10 or 15 bit.
The qualitative changes have been addressed by taking

Fig. 4. Various synthesis runs with different parameterizations

the entire instruction set µ, or a set reduced to unsigned
instructions and immediate memory access only. As stack
depths, we assigned κ = 3 to the data and address stacks
and π = 8 to the return address stack. There are δ = 8
top of stack data registers and ε = 1 address register. The
number of supported traps is λ = 8.

B. Results of the various synthesis runs

While the processor version having a complete instruc-
tion set inferred both address and data ALU, the reduced
version only made use of the data ALU. This is due to the
restriction to immediate memory address operations and
the elimination of all instructions needing an address ALU
for calculations on address registers. Although the tiny 8
bit processor version does not reveal big differences between
full and reduced instruction set, a significant influence is
obvious with the 32 bit implementation. Increased area
differences show up when larger data widths are chosen.
This is to be interpreted as a consequence of the timing
constraints, which are gaining more and more impact on
large parameter values. The extra area overhead of the full
instruction set version is likely to come from an increased
inference of parallel acting functional blocks for meeting
the timing requirements due to the higher complexity of
the data ALU. From the perspective of area efficiency, the
IP-Module allows no major optimizations concerning the
chip area. The main part of the area required by the
processor is occupied by data, address and return address
stack registers. The area taken by these registers is inherent
with the process used. The only combinatorial part, which
can be influenced in size with different synthesis constraints
is the execute stage. But the percentage of combinatorial
chip area is of minor scale and therefore negligible.

C. Test integration

For final verification of the functionality and qualification
of speed and power consumption of our IP-Module, we let
the circuit fabricate with on-chip data memory (see Fig. 5
and Table I). For the test implementation a 0.6 µm 3 layer



Fig. 5. Picture of the test integration with on-chip data memory

metal CMOS process has been chosen. The settings of the
parameters for the integration are given in Table II.

Process 0.6 µm 3LM CMOS
Supply Voltage 5 Volt
Chip size incl. pads 4.6× 4.6 mm
Chip area incl. pads 21.16 mm2

Core area incl. data memory 13.69 mm2

Max. operating frequency 121.5 MHz
Max. throughput 121.5 MIPS
Max. interrupt latency
(without memory R/W stalls)

2 Tclk =̂ 16.46 ns

TABLE I

Key values of the test integration

The program and data memory interfaces are imple-
mented for asynchronous RAMs. While the data memory
has been chosen on-chip, the instruction memory is placed
off-chip. Finally all stacks (return address stack, condition
code stack, data and address stacks) are implemented using
registers.

V. Results and Outlook

We have developed an embedded processor IP-Module
that is highly adaptable in both functionality and config-
uration. This was achieved by separating the processor
core and the system interfaces. The hybrid stack-register
processor is excellently suited for applications with high
interrupt loads. There is a convenient functional verifi-
cation flow covering automatically the configuration of the
processor. It uses assembler code as common starting point
for both synthesizable RTL model and behavioral model.

Furthermore, implementing a high-level language com-
piler could so be done easily because of the register-based
architecture, the read-after-write operation support, and

Param. Description Value
α Data Width 16 bit
β Data Memory Address Width 10 bit
γ Instruction Memory Address Width

& Interrupt Address Range
11 bit

δ Number of Data Registers 12
ε Number of Address Registers 2
κ Data / Address Stack Depth 4
π Return Address Stack Depth 20
λ Number of available traps 8

ν=̂µ Number of supported instructions 40
% Instruction Width

(5 + 2∗ceil(log2 δ) + α)
29 bit

TABLE II

Parameter settings for the test integration

the fully parametrizable assembler. As the assembler is
already integrated into the verification flow, no further
adaptations to the flow are necessary to check the complete
processor-assembler package. To compile high-level code
for the current configuration of the IP-Module, a compiler
needs to know about the instruction set, the data width,
the number of data and address registers and the data
memory address range.

As conclusion, we estimate the design effort for the IP
to be about twice as much as for a one-time implemen-
tation. But this extra effort is easily recovered in future
system designs because the extensive parameterization, the
adaptable instruction set, the configuration-independent
verification flow and the self-parameterizing assembler
make reuse of our IP-Module very simple. Additionally, the
ability to check hardware/software concepts already during
implementation time allows for straightforward design and
saves precious development time.

References

[1] Stefan Pees, Martin Vaupel, Vojin Živojnović, and Heinrich Meyr,
“On core and more: A design perspective for systems-on-a-chip,”
in Proc. International Conference on Application-Specific Sys-
tems, Architectures and Processors. IEEE Press, July 1997, pp.
448–457.

[2] Rajesh K. Gupta and Yervant Zorian, “Introducing core-based
system design,” IEEE Design & Test of Computers, vol. 14, no.
4, pp. 15–25, October-December 1997.

[3] Thomas Röwer, Manfred Stadler, Markus Thalmann, Norbert
Felber, Hubert Kaeslin, and Wolfgang Fichtner, “Intellectual
property module of a highly parametrizable embedded stack
processor,” in Proc. Twelfth International IEEE ASIC/SOC
Conference. IEEE, September 1999, pp. 399–403.

[4] John L. Hennessy and David A. Patterson, Computer Archi-
tecture a Quantitative Approach, Morgan Kaufmann Publishers,
second edition, 1996.

[5] Manfred Stadler, Thomas Röwer, Markus Thalmann, Norbert
Felber, Hubert Kaeslin, and Wolfgang Fichtner, “Functional
verification of intellectual properties (ip): a simulation-based
solution for an application-specific instruction-set processor,” in
Proc. International Test Conference. IEEE, September 1999, pp.
415–420.


