The EventCollector Concegpt

Distributed Infrastructure for Event Generation & Dissemination in Ad Hoc Networks

Thomas Moser, Lukas Karrer

Diploma thesis in electrical engineering

attended by Prof. Friedemann Mattern, Oliver Kasten and Michael Rohs

Abstract

In mobile ad-hoc networks, many applications need to comprehend
the environment made up of the participating devices.

This thesis designs and prototypes an architecture for distributed
gathering and dissemination of network information like link status
or node characteristics to extract neighbourship information.
Knowledge is acquired by evaluating events generated upon nodes
entering or leaving each others radio range. This concept is tested
both in a simulation environment as well as on asmall hardware
platform built around a bluetooth transceiver.

Acknowledgments

We would like to express appreciation to the following persons who
have helped in the course of thisthesis:

Immo Noack
Albert Weiss
Jan Beutl

Contents

CHAPTER 1

CHAPTER 2

CHAPTER 3

Introduction 7

Technical Background 11

2.1 MobileAd-Hoc Networks 11

2.2 Wireless Communication Technologies 12
2.2.1 Bluetooth 12
221HOMERF 15
2.22I1rDA 16
2.2.3WrelessLAN IEEE 802.11b 16
2.2.4 Proprietary RF Communication 16

2.3 Embedded Technology 17

Concepts, Solutions & Design Considerations

3.1 How to Describe a Mobile Network 21
3.11Graph 22
3.1.2 Snapshot Yields Topology 23

21

The EventCollector Concept

Contents

CHAPTER 4

3.1.3 Satistical Description 23
3.1.4 Further Information 24
3.1.5 No Common Perception 24

3.2 Possible Approaches 25

3.2.1 Zero Knowledge Exploration 25

3.2.2 Propagation of Information Through the Vicinity 26
3.2.3 Event Structure 27

3.2.4 Sorage of Collected Information 31

3.3 Architecture of the EventCollector Infrastructure 31

3.3.1 The concept of the EventCollector 31
3.3.2 Tasks of an EventCollector 32

3.3.3 Event Exchange Protocol 33

3.3.4 Flow Control 34

3.3.5 Flooding Algorithm 35

3.3.6 Error Correction 37

3.3.7 Shortfalls of the Protocol 37

3.3.8 Extensionsto the Protocol 37

3.4 Information Extraction 38

3.4.1Topology 38
3.4.2 Connection 39
3.4.3 Mobility 40

Architecture and Realization 43

4.1 General Architecture Overview 43
4.2 Java Software 47

4.2.1 Basic Classes for Framework 47

BT _FlowPacket 48

EventConnectionServerThread 49

4.2.2 Classes for Evaluation of Data 50

4.2.3 Classes for Graphical Representation of Data 50
4.2.4 Classesused in Smulation 51

4.2.5 Gateway 53

4.3 Embedded Software 53

4.3.1 General Notes on Embedded Programming 53
4.3.2 Drivers 55

4.3.4 Scheduler 64

4.3.5 EventCollector on the Embedded Device 65

The EventCollector Concept

Contents

CHAPTER 5 Technical Realization of the Embedded BTNode
Hardware 69

5.1 Design Considerations 70
5.1.1 General Issues 70
5.1.2 Selection of the Microprocessor Platform 71
5.1.3 Hardware Design Considerations for the BTNode Platform 73

5.2 First Steps with the chosen Microprocessor 76

5.3 Hardware Reference 76
5.3.1 On board Connectors and Jumpers 77
5.3.2 Setting Up Operation 79
5.3.3 Hardware Errata 80
5.3.4 Electrical Characteristics 81
5.3.5 Notes on Manufacturing 81

5.4 Contacts 82

CHAPTER 6 Experiments & Results 85

6.1 Simulation of Event Propagation and Evaluation of Data 85
6.1.1 Smulation Run 85
6.1.2 Discussion of the Smulation 95

6.2 Using a Real World Setup 96
6.3 Experiences with the Bluetooth Technology 96

CHAPTER 7 Related Research 99

7.1 Research Relating to Conceptual Aspects 99
7.2 Research Relating to Technical Aspects 100

The EventCollector Concept

Contents

CHAPTER 8 Summary & Outlook 101
Appendix A Circuit Diagram 103
Appendix B Bill of Material 105
Appendix C Application Notes 109
11.1 Uart2Suart 109
11.2AVRnd 110
11.3ADCTest 110
11.4 Using a Software UART on the STK Board 111
Appendix D Bibliography 113
Vi The EventCollector Concept

CHAPTER 1

|ntroduction

The shift into the 21'st century was accompanied by a shift of paradigmsin infor-
mation technology. The personal computer age which thrived in the 1990's led over
into the age of ubiquitous computing. The omnipresence of information technology
is revolutionizing usage of everyday-things. Appliances are built with more and
more intelligence. In a next step, these devices will begin mutual communication
over wireless links on an ad-hoc basis. Undreamed-of applications will revolution-
ize daily living in the age of pervasive computing.

Wireless ad-hoc networks differ fundamentally from their wired counterparts.
Mobile wireless ad-hoc networks (MANETS) do not rely on a base station or cen-
tral control. Most of the components are mobile, thus network topology changes
constantly. As nodes join and leave networks frequently, predictions about the con-
nectivity between any two nodes at a given timeis a difficult task. Moreover, con-
nections between devices are unstable, not secure and prone to errors.
Communication takes place in a peer-to-peer fashion and interaction must be
enabled without prior configuration. Nodes deployed in places without existing
infrastructure must cooperate in acommon exploration process and keep on doing
so in the ever changing environment.

Nodes which make up ad-hoc networks may be of different kinds. Anything from
supercomputers down to credit-card based |ow-power devices may want to interact.
Since joining nodes are apriori unknown, thereis little or no information about the
node characteristics or capabilities of partnering devices.

The EventCollector Concept 7

Introduction

The EventCollector Concept

In thisthesis, we propose a distributed architecture where nodes cooperate to col-
lect and distribute information about their environment. Situation avarenessis a
fundamental prerequisite for further services such as routing, tracking or naviga-
tion.

The EventCollector concept consists of four layers:

e Inthe“Discovery layer”, information about a node’s vicinity is collected. Vari-
ous types of properties like changing link states, sensor data or information
about the existence of nodes which are located in radio distance may be gath-
ered. Generated datais encapsulated into events which are passed up one layer
for storage and propagation.

e Thelayer responsible for “knowledge sharing” manages local storage of events
and handles propagation of event data. To share collected network information,
events are exchanged between adjacent network nodes and thus disseminated
throughout the network. These two layers form an entity called EventCollector.

e The“Information Processing” layer processes collected events provided by the
EventCollector and acts as server to entitiesin the “Application Layer”.

e Applications may exploit this knowledge to their benefit. For example, the his-
tory of connections can be used in multi-hop routing algorithms to determine a
route between network nodes. The same information may be used to compute
approximate location of mobile nodes, if the network comprises a number of
stationary nodes with known location (e.g. printers, set-top boxes, or specialized
“responder beacons’ nodes).

| |
Application Layer | | ConnectionGraph | |
| |
Information Processing | |
| |

Knowledge Sharing Event Propagation
Event Generation

Node Y

Event
Collector

Discovery Layer

Node X

Node Z

The EventCollector Concept

Such an EventCollector architecture was implemented for this thesis. Events are
generated and disseminated by EventCollectorsin either asimulated or alive envi-
ronment. In the live environment, the mobile nodes use Bluetooth[1] as communi-
cation medium. Gateways make event information accessible to applications
running on PC’s, where further processing is done. As an example, a topology
snapshot and measures for mobility and average connection timeis extracted out of
the network information. Thisinformation is provided to an application for graphi-

cal display.

Documentation Structure

In chapter 2 of this documentation, background information to the applied technol -
ogieswill be given. Topics such as ad-hoc networks, different wireless technologies
and embedded systems will be covered.

Chapter 3 starts with an overview of concepts to describe mobile ad-hoc networks.
Different possibilities for representation of the events and the derived information
isexplored. Finally, a detailed description of the EventCollector concept is given.

Chapter 4 covers the implementation of the EventCollector architecture. Detailed
explanation of the software structure of both the Java simulation program and the
software residing on the embedded hardware is given. Section 4 also covers soft-

ware design issues for al mentioned components.

Chapter 5 describes the embedded micro controller board used as mobile EventCol -
lector unit. Design considerations as well as operating guidelines and reference
material is given here.

In chapter 6, an experimental setup and the resulting conclusions are covered. Fur-
ther, problems encountered in the real world deployment of our infrastructure and
the Bluetooth technology itself are discussed and possible solutions and
workarounds are pointed out.

Chapter 7 lists research related to this thesis.

Finally, chapter 8 summarizes this thesis and gives an outlook over possible
enhancements.

The EventCollector Concept 9

Introduction

10

The EventCollector Concept

CHAPTER 2

Technical Background

This thesis bases on several key technologies such as mobile ad-hoc networks,
Bluetooth and embedded design and programming. Chapter two gives an overview
over these technol ogies and pinpoints possible pitfall and difficulties. Section 2.1
covers mobile ad-hoc networks in general, whereas section 2.2 goes into details of
four wireless communication standards. Finally, section 2.3 discusses embedded
designs and programming.

2.1 Mobile Ad-Hoc Networks

Compared to afixed infrastructure network like awired Ethernet an ad-hoc network
has several particularities. There is no system administrator and no central author-
ity. Entities involved are not known at the outset, they rather join and |leave the net-
work whenever they like. Depending on the type of network this resultsin amore
or less changing environments. At your workplace your PDA and your PC typically
make up arather static network, while people passing each other in the hallway
form avery dynamic one. Types of entities involved are not known either; the envi-
ronment is heterogeneous. Cellular phones, PDAS, PCs and ear phones are among
the common ones, but also cars, access control systems, cigarette vending machines
and other types of electronic devices are possible. Some of these devices have suffi-
cient electrical power because they are statically connected to the power supply sys-

The EventCollector Concept 11

Technical Background

tem or have some other source of energy, but small mobile devices rely solely on
battery power and therefore must economize power to the extreme.

Since thereis no central authority all nodes must participate in the configuration
process of their network and keep on doing so constantly. One of the first question
is: who is around anyway? In order to pick up communication some sort of 1D or
address of the communication counterpart is needed. When a connection is estab-
lished, it might be erroneous and | must be prepared for it to be torn down at any
moment without notice, maybe because the owner of the PDA | am communicating
with walks out of range. Not just the communication link is unreliable, but also the
partner itself. 1t might run out of power for example.

It is hard to foresee in what kind of environment an ad-hoc network will be operat-
ing. It may be afactory floor with electrical equipment that produces interference.
The wireless communication technology used must be as robust as possible while
keeping transmitting power at a minimum.

Thereisno global view of the network, every node hasits own perception. Every-

one knows what kind of misunderstandings can happen, when people talk at cross

purposes simply because they are not on the same standard of knowledge. Nodesin
an ad-hoc network must be able to cope with that difficulty.

Since transmitting power generally is kept aslow as possible, the radio range is
quite small. Therefore, nodes must assist each other in passing on messagesto other
entities. But routing is a problem, specially since the physical position is hard to
determine.

2.2 Wireless Communication Technologies

Several wireless technologies are beginning to establish themselvesin the mobile
ad-hoc network sector. Several wireless industry groups proposed competing stan-
dardsin similar and sometimes overlapping fields of application. This section com-
pares the vision and goals compared to those of Bluetooth. The listed benefits and
downsides of each protocol have contributed to the choice to use Bluetooth.

2.2.1 Bluetooth

Bluetooth [1] is an radio interface which operates in the Industrial - Scientific-Medi-
cal (ISM) Band at 2.4GHz. To replace a diverse set of non interoperable standards

12

The EventCollector Concept

2.2 Wireless Communication Technologies

for wireless communication, Bluetooth provides a universal framework for seam-
less communication between different devices.

In 1994, Ericsson started research for alow-power, low cost radio interface between
cellular phones and accessories. 1998, Ericsson, Nokia, IBM, Toshiba, Intel joined
forcesin the Bluetooth Specia Interest Group (SIG) to define a common standard.

Bluetooth enables up to 7 devices to communicate together spontaneously by form-
ing a piconet. Connections support both voice and data traffic. Transceivers have
been designed to be of small size and operate at |ow power, to be incorporated in
mobile phones and PDAs working on batteries.

Careful attention has been made for worldwide usage. To circumvent any regula-
tory problems, the globally available ISM band, unbound by any regulatory stric-
tures, is used as Radio Frequency carrier. Asthe ISM band contains many RF
radiators, interference by devices such as cordless phones, microwave ovensis
common. Bluetooth uses a technology called frequency hopping to cope with possi-
ble interference. The available frequency spectrum is divided into 79 channels
which are switched 1600 times per second. Each channel is divided into 625pus slots
to be used for data transfers.

Several requirements influenced the Bluetooth standard:

e support for both voice (high quality real time data) and data communication
e devices communicate on ad-hoc basis without user interaction.
e multiple connections are possible

e similar protection as when two devices communicate over cable is aspired.
Authentication with challenge response and stream cipher encryption provide
privacy.

e very small sizefor integration in various devices

e |ow power consumption

The EventCollector Concept 13

Technical Background

Custom Applications
TCP/IP | |RFCOMM

Link Manager

Baseband
RF

FIGURE 1. Bluetooth Protocol Stack

The Bluetooth protocol stack defines several layers:

The Radio Frequency (RF) layer sends and receives modul ated bitstreams.
Baseband (BB) defines timing, framing and packet flow control on the link. Base-
band provides transmission channelsfor both voice (SCO, Synchronous connection
oriented with reserved timeslots) as well as data (ACL Asynchronous connection
less point-to-point or point -to-multipoint) communication.

Link Manager assumes responsibility of managing connections, power manage-
ment and enforcing fairness among slaves. It further handles link setup, security
and device discovery.

The L2CAP (Logical Link Control and Adaption Protocol) layer handles multiplex-
ing of higher level protocols, segmentation and reassembly. It provides servicesto
upper layer protocols by transmitting data packets over L2CAP channels. Upon
establishment of aconnection over achannel, L2CAP negotiates several parameters
such as MTU, QOS, time-outs etc.

RFCOMM provides serial cable emulation, which is used by legacy applications to
communicate with other parties.

TCP/ 1P is defined as second major communication protocol.

14

The EventCollector Concept

2.2 Wireless Communication Technologies

In Bluetooth networks all units are peer units, distinguishable only by a unique
48Bit address. At the start of communication, the initializing unit becomes master
and the other dave. The slave device synchronizes its clock with the master upon
connection establishment. Master devices handle which channels the slaves shall
send on and which slave unit is allowed to send. Connection establishment needs
typically about .6 to 1.2 seconds. When not in use, units can sleep in a stand-by
state which is beneficial for battery operation. Every 1.28 or 2.56 seconds (depen-
dant on configuration) a unit will wake up and listen for incoming requests.

A connection is made by a PAGE message sent out by theinitiator, if the receiver's
addressis know or by an INQUIRY message followed by a PAGE message if the
addressis unknown. The INQUIRY messageis typically used for finding unknown
devices which provide public services such as printers, gateways etc.

Units communicate with 721kBits/second with up to 15m distant devices. To save
power and minimize radio interference problems, an RSSI (Remote Signal Strength
Indicator) measure is used to adapt RF signal strength.

The Bluetooth SIG is promoting new usage models which create additional benefits
for users of portable telephony. The two-in-one phone is a bluetooth enabled hand-
set which acts as a portable phone at home using a Bluetooth basestation or a con-
ventional GSM phone when used outdoors. Ancther frequently mentioned model is
the briefcase trick. PDAs or laptops connect to the internet or company network via
cellular phone which is stored in your briefcase. Automatic synchronization is
another proposed benefit. As soon as one enters the office with aPDA, address list
and calender are updated automatically.

Bluetooth features some negative aspects for application in mobile ad-hoc environ-
ments. The standard aims to replace point to point serial communication, thus
building up on a master slave architecture. A truly peer to peer infrastructure with
equal entitiesis not intended. Further, high energy consumption has emerged as a
problem in mobile equipment relying on battery power.

221HOME RF

The HomeRF [2] working group is developing an open specification targeting wire-
less communication in home environment. Both voice and data communication are
defined. Just like Bluetooth, HomeRF closely integrates TCP/IP with peak data
rates up to 1.6Mb/s. Ad-hoc communication between asynchronous devicesis pos-
sible, acontrol point is only needed for audio data transfers.

The EventCollector Concept 15

Technical Background

Generally, HomeRF isvery similar compared to Bluetooth. The only notable differ-
ence from the users perspective is an enlarged range up to 50m (which yieldsin
higher power consumption) The higher range may be more suitable for covering an
entire home whereas Bluetooth targets the Personal Area Network (PAN). The
higher power consumption makes it difficult to deploy HomeRF in truly maobile
devicesin and ubiquitous environment. The most notable downside of HomeRF is
its prevalence which is limited to mainly the United States.

2.2.21rDA

In 1993, the Infrared Data Association [4] set up hardware and software standards
for infrared communication links. The IrDA protocol stack supports similar usage
models as those of Bluetooth. Legacy applications which rely on serial ports are
supported via serial cable emulation. IrDA is state of the art in printers, handheld
computer and camera equipment. The advantage of using Infrared over Radio Fre-
quency include reduced cost, lower power consumption and less regulative restric-
tions for usage. The most significant disadvantage of using IR as carrier istheline-
of-sight restriction and alimited range. Further, IrDA supports only asynchronous
point-to-point communication between 2 devices.

2.2.3WirelessLAN IEEE 802.11b

The 802.11b [5] standard issued by |EEE defines an RF physical Layer and
Medium Access Control for wirelessLAN connectivity. The goal of IEEE 802.11is
providing LAN based applications in alarge radio coverage with bandwidth up to
11MBits. Unlike Bluetooth’'s paradigm, Wireless LAN relies on central infrastruc-
ture and does not focus on ad-hoc peer-to-peer communication. Just like Bluetooth,
802.11b usesthe ISM Band for communication deploying. Direct Spread Spectrum
Sequencing (DSSS) is used to handle RF interference.

At the moment, hardware and power requirements do not encourage the deploy-
ment of Wireless LAN technology in mobile embedded systems. Furthermore, it is
heavily influenced on data communication and thus does not provide any synchro-
nous communication capabilities. 802.11 iswidely used. Wireless LAN is enor-
mously popular nowadays.

2.24 Proprietary RF Communication

Another possibility for communication is using proprietary radio links over RF
technology. Numerous commercial transceivers are available, some specially

16

The EventCollector Concept

2.3 Embedded Technology

designed for low power systems. With bandwidth up to 100kbps these transceivers
would fit well into the EventCollector architecture. While consuming very little
power, one major disadvantage must be considered: Transceivers do not include
baseband and link management specifications like that of Bluetooth. Implementa-
tion of these protocolsis not only complex but aso prone to errors. Disadvantages
outnumber possible benefits using a proprietary protocol in the intended setup of
thisthesis.

2.3 Embedded Technol ogy

Paradigms of embedded System differ greatly from their counterpart in large scale
designs. Limited resources like memory or computing power may pose pitfalls
which are not encountered normally.

The most limiting factor in embedded designsis power consumption. Often, mobile
embedded platforms run on battery power. To achieve long battery cycles and low
weight, designs must be as efficient as possible regarding power consumption. Sev-
eral techniques help conserve energy.

e Highly integrated circuits: Designs with large integration need |ess energy.

e | ow power components: Operating voltage is proportional to power consump-
tion, thus energy saving components running on as low as 1.5V are chosen.

e Low clock frequency: CMOS components’ power consumption is proportional
to the clock frequency.

e Stand-by-Mode: Energy-thirsty devices are disabled or put into sleep mode
when not in use

Table 1 on page 17 gives an overview over the power consumption of different
devices.

TABLE 1. Energy consumption of different devices

Device Power consumption Normal Battery Cycle
800MHz Pentium 111 60 MW
1LED 5V 50 mw

4MHz Atmel Mega 103L 20 mw

The EventCollector Concept 17

Technical Background

TABLE 1. Energy consumption of different devices

Device Power consumption Normal Battery Cycle
Mobile Phone StandBy 8mw 250 hours
Digital Watch 0.005 mwW 4 years

Another restraint is processing power. Many embedded platforms use 8 Bit CPUs at
low clock frequencies. Thisyieldsin low power consumption but also restrict pro-
cessing power.

A wide spread characteristic for embedded designs is small memory footprints.
Frequently used embedded microprocessors such as MicroChips PIC have less than
1kByte RAM. As mentioned above, memory should be incorporated into the micro
controller unit. But, static RAM is expensive and relatively large compared to other
parts of the MCU such as ROM, Flash or logic.

E
£
=
a
- |
o

m

Hm

il
|

i
f |
|
|H
I
L

FIGURE 2. Die of AT90L S2XXX SeriesMCU

Figure 2 on page 18 shows a dieimage of an AVR AT90L S2XX X Series MCU.
This micro controller contains 2kByte Flash memory and 128Byte RAM and
EEprom Memory. Memory is usually recognized as regularly structured areas on
thedie. In this case, Flash Memory, which islocated on the lower |eft side of the
die, takes up about the same amount of space asthe RAM and EEPROM combined,
(situated in the center) but stores up to eight time as much information. Manufac-

18

The EventCollector Concept

2.3 Embedded Technology

turerstry to keep the size of chip dies as small as possible, since space on silicon
wafers costs money.

To overcome memory and processing power restrictions, embedded platforms are
often programmed in assembler. Frequently, deployment of an operating systemsis
abandoned in favor of speed and low memory requirements.

Programming in general is less comfortable in embedded systems. As embedded
devices often have only little or no input / output capabilities, programming is done
on ahost platform using a cross compiler. This renders debugging quite difficult.
Further, requirements on code quality is extremely high. Embedded systems are
often used in a zero-configuration, security-relevant areas where failures are not tol-
erated.

Moore's Law aso appliesto embedded systems. In normal designs, performanceis
doubled every two years. Thisis achieved using faster designs with more transistor
and advances in technologies used. Higher speed and increased number of transis-

tor augment power consumption, which is not desirable in embedded components.

Hence, new designs will primarily rely on superior technology to gain performance
at amuch slower pace compared to normal designs.

Another restraint is the price of embedded systems. In an environment where com-
puting is ubiquitous, devices must be very cheap. This again imposes requirements
towards manufacturing and design of such systems.

The EventCollector Concept 19

Technical Background

20

The EventCollector Concept

CHAPTER 3

Concepts, Solutions &
Desgn Condderations

The goal of thisthesisisto define adistributed infrastructure for an ad-hoc network
where all participating nodes contribute their share to the exploration of the net-
work. Depending on its capabilities nodes may choose to put more or less effort
into producing, storing and distributing network data. With the collected informa-
tion, an application running on a node may compute properties of the network that
seem useful. However, such an infrastructure poses some problems. First thereis
the question of how to describe and represent a mobile network in general. Thisis
important to the nodes that need network knowledge for their task, for example, a
node that runsa“Vicinity” application. Next, some possible approaches to gather
neighbourhood information from a zero - configuration network are presented
together with our design choices for an implementation. This basically is the explo-
ration for the Event Collector concept. Next this concept is described in detail.
Three possible information extraction algorithms are then presented and finally
such an information extraction is exemplary demonstrated.

3.1 How to Describe a Mobile Network

First of all aremark on theterm “network”. A network usualy refersto entities that
are connected by communication lines. If one of these entities |ooses connection,
strictly spoken it doesn’t bel ong to the network anymore. Since aconnectionin a

The EventCollector Concept 21

Concepts, Solutions & Design Considerations

mobile ad-hoc network may be rather unstable and not clearly up or down we do
not use this term very strictly, or use “vicinity” instead. Imagine an area with some
nodes which do not see each other at al. Using the strict definition, thisis not a net-
work since no connections exist. By moving one node about and letting it make
contact with others, nodes learn something about their vicinity.

So, we want to explore a mobile ad-hoc network. But how is such a network
described? A wired Ethernet infrastructure isin many ways a simpler case. Gener-
aly it isset up by a network administrator and is quite stable and static. Not so an
ad-hoc network. Neighbours change, connections are unstable, an entity may sud-
denly stop responding and come up again. It is difficult to find a global view on the
network. Below arepresentation form for ad-hoc networks is presented.

3.1.1 Graph

A network topology typically is described by agraph. Nodes of the graph represent
entities while edges represent a bi-directional communication link. But for an ad-
hoc network there are more important properties than just “is connected” or “is not
connected”, because it is not implicitly stable. Therefore a graph representation is
extended to describe not just atopology but al the properties of the network. So, a
node still corresponds to a communication device but an edge now describes the
whole relation from one node to the other. Such arelation basically is arecord of
properties. We have specified three exemplary properties (i.e. topology, connection
weight and relative mobility) as described later in this chapter. As with the above
graph, such anetwork of N nodes can be stored nicely in aN*N matrix. Every node
has arelation to every other one, so the graph is fully connected. If two nodes have
not had contact with each other, it still isarelation, i.e. contains information. Note
that the graph represented by this matrix is directed! Thisis more flexible and con-
tains more information. For Example imagine a node that sees another one, but is
not detected by the latter. This scenario is realistic, since the detection of nodesis
not necessarily dependent on an rendezvous or connection establishment.

In Figure 3 on page 23 a sample graph is depicted. This fully connected graph can
be described by the matrix shown in Table 2 on page 23. The relation from 1 to 2
(aq2) and therelation from 2 to 1 (ay,) are different, since the graph is directed.
Table 3 on page 23 is an example of such arelation record with the properties
“Topology”, “ Connection” and “Mobility”.

22

The EventCollector Concept

3.1 How to Describe a Mobile Network

TABLE 2. Sample Network Matrix
1 2 3 4

1 a2 €13 di4
2 a1 b23 foa
3 €31 b32 c34
4

da1 fa2 c43

TABLE 3. Sample Relation Record

Topology Connection Mobility
true 0.435 22

FIGURE 3. Sample Network Graph

3.1.2 Snapshot Yields Topology

A topology of the network may be obtained by taking a snapshot of the connection
state of the network. It isimportant to stress that atopology is associated with a
point in time, since the topology might change fast. Because thereis no global,
external view of the vicinity the information about nodes and links is generated by
the nodesitselves. Then it is propagated throughout the network. In a practical sce-
nario, atopology is always based on historical data. A current and accurate topol-
ogy can never be abtained due to propagation delays. The time spread however, in
which it can be expected to be more or less accurate depends on how dynamic the
network changes. The determined topologies of two entities may differ from each
other because both might not have the same view of their surroundings.

3.1.3 Statistical Description

As described in the previous chapter, a current topology cannot be known, instead,
asnapshot of a past instant is seen. And since the intentions of nodes (physical
path, uptime etc.) is not known, no accurate prediction of the topology in the future
can be made. However, under the assumption, that the general habits of a node will
be similar over time, it should be possible, to make a statistical prognostication. For
example a printer normally stays in the same place while a PDA will be carried

The EventCollector Concept 23

Concepts, Solutions & Design Considerations

around by its owner, which indeed does have particular habits. Maybe the | atter gets
himself a coffee six times aday and therefore walks from his office to the machine
and back. The coffee machine itself probably will be turned on during the day and
shut itself off at night, and hence disappear from the vicinity. Depending on the
application one can define measures in the relation record to reflect such statistical
values, for example average uptime. Note that all thisinformation is collected
purely by observing the network, no other knowledge isinvolved! Possible relation
measures will be discussed later in this chapter.

3.1.4 Further Information

Zero configuration networks must configure themselves. Nodes must gather all nec-
essary information. Such information could be alink state as seen above, but also
information about the nodes itself. For example, if anode would be known to be a
coffee machine, one could figure that it is rather static and immobile. But isn’t this
a contradiction to the previous statement of zero configuration? We believe other-
wise, if these properties are restricted to a sort of “factory setting”. Naturally, a cof-
fee machine will stay a coffee machine aslong asit exists. It's also clear that a
coffee machine does not walk around, i.e. is spacially rather static. So why
shouldn’t it know about it’'s identity and inform the other nodes? Neither the user
nor the service-man has anything to do with configuration. Thisisbasically theidea
of SDPs (Service Discovery Protocols). On the lower layers, Bluetooth incorpo-
rates an informal parameter (device class field) that can be set at production time
and that other Bluetooth devices can read out. There are no standards however. We
did not occupy us with this subject but it could be an extension to the EventCollec-
tor architecture and certainly bring in additional usable information.

3.1.5 No Common Perception

It must be kept in mind that the perception of the network may differ from node to
node. One big issueistime. Thereis no global time service by definition and there
may be unknown latencies on network links. It is troublesome for the nodes to try
to agree on acommon time base. The perception may also differ depending on the
information received and algorithms used. Even if we assume that everybody uses
the same algorithmsto cal culate rel ation wei ghts between two nodes, theresults are
likely to differ. Not al information is received at the sametime on al nodes, if itis
received at all. Information may get lost or may not be propagated any further
because it reached the limit of hops (TTL). Also, a node may have discarded infor-
mation because of limited resources. What ever applications use the generated
topology data must be able to cope with its errors and imperfections.

24

The EventCollector Concept

3.2 Possible Approaches

3.2 Possible Approaches

So we want to explore a mobile network from scratch, without any prior knowl-
edge, find the involved entities and calcul ate relations between them in atruly dis-
tributed fashion. Different approaches are discussed in this chapter and our choices
will be presented. An important point that influenced our decisions are the limited
resources on embedded platforms, especially storage space. Previoudly the repre-
sentation form of an ad-hoc network was described. Not every node may want to or
is capable of realy building such arepresentation. But every node must provide
basic functionality to contribute to the dynamic network infrastructure configura-
tion process.

3.2.1 Zero Knowledge Exploration

What can anode find out about it’s surroundings? The first step, but not necessarily
the easiest, is to discover possible neighbours. With afixed infrastructure available,
there are simple solutions to this problem like ARP on an Ethernet network. Lack-
ing such afixed infrastructure things get more complicated. Luckily most wireless
technologies feature some sort of discovery algorithm. Bluetooth for example
incorporates an inquiry algorithm that finds other BT deviceswithin itsreach. Since
BT usesfrequency multiplexing together with frequency hopping thisisanontrivia
task and takes sometime. It gets even more complicated if some devices go into
power down mode or are actively transmitting themselves. This subject will be dis-
cussed in detail in chapter 6. Another way could be to just listen to the network traf-
fic and remember the addresses of the nodes involved. While thisworks well on
Ethernet or other multiple access technologies with only one frequency, again, this
is not easily feasible on the more complex wireless communication systems. Impor-
tant for now is, that there are technology specific methods to find neighbours.

In a second step the connections can be analyzed. Isit possible to open adatalink
to the neighbours? Are there any other properties that can be obtained, like link
quality, throughput, latency, error rate or physical distance?

Bluetooth specifies some functionality to measure the quality of alink and the
strength of the signal received. Interpreting these measurements as physical dis-
tance however is not straight forward, for example the transmitting power would
have to be known. The Bluetooth specification is not clear in these points.

The next thing to get to even more information about the vicinity is to share the col-
lected data with the neighbours. My neighbours might see other nodes than | and

The EventCollector Concept 25

Concepts, Solutions & Design Considerations

thus extend my range of perception. Also these entities might be online longer than
I am and therefore | can learn something about the time before my appearance. By
sharing data with others the range of my perception increases while the difference
of perception of the environment between the nodes decreases.

3.2.2 Propagation of Information Through the Vicinity

In what form will the identity of nodes be propagated? It could be done explicitly in
some sort of identity packet, together with associated properties. Alternatively,
sending the state of a neighbourship relation between two nodes, which contains
the identities of the two neighbours, spreads the fact of their existence implicitly
throughout the network. We chose to use the second, implicit form of propagation.
It is much simpler and we don’t have any node properties to share anyway at this
point (as described above). The later introduced protocol between the nodes how-
ever can be extended to support an explicit distribution of identities and other addi-
tional information if desired.

Propagation of connection state information can be done in several possible ways:

e aclient server architecture: A node asks a neighbour to reveal some information
(information pull). Through this polling policy local datais the most up-to-date
possible because fresh datais received whenever it is needed. On the other hand,
if nothing changes, unnecessary transmissions are made.

e mandatory propagation: Every node must accept new data and propagate it,
maybe even storeit (information push). Thisresultsin aflooding algorithm. The
datawill propagate fast, transmissions will only be made when the topology
changes. But nodes get data they might not want, possibly even large amounts
of data.

e combination of push and pull: One could try to combine the advantages of the
above two methods.

We chose to implement an information push algorithm through flooding. Mainly
because of the following reasoning: A node might not want to receive some data,
but maybe some further down the line does. Asindividual entities cannot judge
whether dataisrelevant or not they have to propagateit all. (Later in this chapter we
will see that anode can influence it's own relevance by setting the TTL value). As
flooding doesn’t require routing and can be stateless, it is easier to be implemented
on embedded platforms.

26

The EventCollector Concept

3.2 Possible Approaches

Now, what exactly should be propagated? “Node A has seen node B”? Thisis an
event and can be recorded and distributed without significant problems. But what
about a connection property? “Node A has seen node B and the reception is 4 by
5"?What if the connection between these two nodes now slowly gets worse? Here
itishard to define the moment to generate an additional event to propagate changed
link quality. Thisis no problem however with an information pull. The client gets
the most recent measurement whenever he needsit. In an information push however
athreshold must define how much a property may change until it should be retrans-
mitted. Or maybe a change-rate threshold would be more adequate? Another way
would be to send the measured values periodically, but at what interval? What if a
property changes very often? In addition it isimperative, that all node employ the
same mechanisms or at least publish them, so everybody knows when events are
generated, and when not. (Lack of information isinformation as well, “no news,
good news”).

We chose to implement an event based reactive infrastructure despite the problems
mentioned above. Thisway, nodes can be alot dumber, both in behavior and in
memory. Also reaction times are smaller.

3.2.3 Event Structure

Basically an event is made up of the event source, the counterpart, atime stamp and
type. In the manner: “1(55) found him(34) at 12:34:02” or “1(12) lost him(67) at
23:45:32". A collection of such events can then be processed, for example to com-
pute the total connect time by adding up the time spans between a each pair of
found event and the corresponding lost event. But what is the corresponding lost
event? By sorting them chronologically it should be immediately the following one.
But if alost - event was thrown away during propagation, there are two consecutive
found events. Maybe alost event together with the next found event get dropped
somewhere. That way a connection time that is possibly much too long will be cal-
culated without even noticing the error. Numbering the events would help to detect
missing events but would also increase the event size and introduce new problems,
for example when devices reboot. This solution proved to be much too unstable on
unreliable networks and quite often totally wrong conclusions were made based on
the collected events.

In asecond revision we chose to pair up the lost and found eventsinto one single
event. It is made up of the event source, the counterpart, the found time, the lost
time and some flags. When two nodes find each other, each generates such an event
with the both found and lost time set to the actual time. This event testifies that
these two nodes have seen each other. It doesn’t say anything about the duration of

The EventCollector Concept 27

Concepts, Solutions & Design Considerations

the connection, it is assumed to be zero (lost and found times are equal). It looks
somewhat like this: “1(55) found him(34) at 12:34:02 and lost him again at
12:34:02".

LOST

-
LOST

-

l l l<—>l l l l<—>l l >t
o U

\j

\j

FIGURE 4. Possible Failures

When the two nodes loose sight of each other, both update the previous event with
the correct loss time: “1(55) found him(34) at 12:34:02 and lost him again at
13:51:29". This event is propagated just like before. It is easily matched to the pre-
vious, corresponding found event by the first three fields of the event, these values
have not changed (source identity, counterpart identity and found time). All other
nodes update existing local copies and keep on propagating.

To keep the system current during along connections the nodes should produce
spontaneous updates at regular intervals. To distinguish them from afinal event a
“FINAL" flag exists. These updates will be sent with the “FINAL” flag cleared, to
mark the update as not final, meaning both still see each other. Thisis some sort of
compromise to help with information extraction. It makes the algorithms more sta-
ble, since alost event that gets lost could wrongly indicate two entities to be neigh-
bours. For example, if no update was received from two neighbours for arather

28

The EventCollector Concept

3.2 Possible Approaches

long time, they probably lost sight of each other but couldn’t generate afinal lost
event or maybe they could but it wasn't propagated all the way to me.

The described algorithm is a pessimistic one. It never produces longer connect
times than actually happened. Another advantage is the reduction of stored data.
Updates naturally do not generate more data on storage, which isamajor bottle-
neck of embedded devices.

Using the mentioned algorithm, let uslook at an example. Assume, that a node
receives the eventslisted in Table 4 on page 29.

TABLE 4. Example Using Events|

me him foundTime lostTime final
2 12:43 12:43 false
12:43 12:43 false

12:45 12:46 true

Thisinformation can be illustrated on atime line shown in Figure 5 on page 29.
The first two events are displayed as a single point in the time line. The third event
specifies an connection between node 1 and 3 during 1 minute starting at 12:45.

— -t

12:43 12:44 12:45 12:46 12:47 12:48 12:49 12:50 12:51

FIGURE 5. TimeLinel

TABLE 5. Example Using Eventsl |

me him foundTime lostTime final
1 2 12:43 12:48 false

Next, an update event as listed in Table 5 on page 29 is received. By looking at
“me”, “him” and “foundTime” we seethat it is not anew event, but an update to the

The EventCollector Concept 29

Concepts, Solutions & Design Considerations

first event in the previous list. We can update this entry in the event list by replacing
the “lostTime” with the new one. The “final” flag is false, meaning that the neigh-
bourship between “1” and “2” still goes on. The new time lineisillustrated in
Figure 6 on page 30. Now we know for surethat “1” has seen “2” between 12:34
and 12:48, maybe longer. But what about “2”? If we know that the relation between
the two is truly symmetric, we can safely assume that “2" has seen “1” aswell. In
this case the information is redundant. On the other hand, the fact that “1” has seen
“3" but not the other way around may tell us, that this relation is asymmetric. For
the Bluetooth node network this could mean than node 3 does not know about the
EventCollector infrastructure and does not generate events.

- N =
oo
W =N
N
A

]]]]]]]]]
T T T T T T T T T

12:43 12:44 12:45 12:46 12:47 12:48 12:49 12:50 12:51

\J

FIGURE 6. TimeLinell

TABLE 6. Example Using Eventsl |

me him foundTime lostTime final
2 1 12:43 12:50 true

A last event finalizes the connection between 1 and 2. Note that the FINAL flag is
now set. Node “2” obviously realized at 12:50 that it haslost sight of “1”. After
updating the second event in the event list with the correct “lostTime” and changing
the “final” flag to true the new time line looks as depicted in Figure 7 on page 30.

- N =
oo
W =N

1 1 1 1 1 1 1 1 1
T T T T T T T T T

12:43 12:44 12:45 12:46 12:47 12:48 12:49 12:50 12:51

\

FIGURE 7. TimeLinelll

30

The EventCollector Concept

3.3 Architecture of the EventCollector Infrastructure

3.2.4 Storage of Collected I nformation

It is obvious that information in a distributed system is stored in a distributed way.
This resultsin redundancy, which cannot be avoided, respectively even may be
desired. It isalso clear, that not every node can store the same amount of data since
thereisafactor of some 100,000 between the memory available on amicro control-
ler and a desktop PC. So every node should be able to decide on its own, how much
datait wants to store, if at al.

To get alot of historic datato extract some habits of nodesit is convenient to have
some device around with large of storage space, like a PC. But of course, it is not
necessary.

3.3 Architecture of the EventCollector
Infrastructure

This subchapter describes the EventCollector architecture. As was explored previ-
oudly, it consists of nodes that interact with one another. They collect events and
share it among them. This distributed collection of events together with the propa-
gation makes up the EventCollector infrastructure. Every node may process the
received data on its own and compute the topology or other properties of the net-
work.

There are different nodes possible: mobile embedded Bluetooth devices, laptops
with Bluetooth capabilities, PC with Bluetooth capabilities, or just abstract entities
in the simulation environment. Despite the big difference in resources, bandwidth
and mohility, no assumption is made on the capabilities of the node. In other words,
al nodes are equal, and have the same functionality. Properties of nodes and con-
nections are extracted solely from the collected events.

3.3.1 The concept of the EventCollector

The most important entity in the EventCollector architecture is the EventCollector.
Simply speaking, it generates, collects and propagates events to other EventCollec-
tors. We have such EventCollectors everywhere: embedded on the BT - devices, on
desktop computers and in the BT Sim simulation environment. The communication
runs over a Bluetooth connection between the Bluetooth capable devices and over

The EventCollector Concept 31

Concepts, Solutions & Design Considerations

TCP/1P between the Java EventCollectors, with gateways in between the two
worlds.

Vicinity

BTSimulator

vvvvvv

Y e

Connection Graph

a

real world EventCollector service simulated
Bluetooth environment and applications Bluetooth environment

vvvvvv

FIGURE 8. General Architecture Overview

3.3.2 Tasks of an EventCollector

An EventCollector has three main tasks.

1. collect events: Each event received is considered to be inserted into the collec-
tion. Whether it actually will be inserted or not depends solely on the EventCol-
lector. Depending on the resources available it will keep along list or only the
most important events, according to its own priority function (filter). For exam-
ple an EventCollector with very limited resources may choose to keep only the
newest 10 events.

2. generate events: If an EventCollector sees another node it generates events at
regular intervals aslong as the other nodeisin sight. Thisis described in the
previous chapter. If both involved entities are EventCollectors, they both sym-
metrically generate events. If only one of them is an EventCollector and the
other one does not know anything about this infrastructure, naturally only the
former generates an event (asymmetrically). When an EventCollector looses
sight of one of its neighbours, it generates an update event with the final flag set,
to indicate the end of the neighbouring relation to this particular node.

The EventCollector Concept

3.3 Architecture of the EventCollector Infrastructure

3. propagate events: Upon connection establishment between two EventCollectors,
a certain amount of events is exchanged. Each Collector sends its top ranking
events. It decides on its own, which newly received eventsit wants to keep. This
propagation results in a flooding of the vicinity with events, the gathered infor-
mation is efficiently spread.

Java EventCollectors can be cascaded and are therefore used in different placesin
our setup: Every node in the BTSim simulation environment has such an EventCol -
lector, used in the same way as its counterpart on the embedded platform to gener-
ate events and propagate them. A Java gateway has one as well, but it doesn’t
generate events, it only stores events generated by the Bluetooth nodes and distrib-
ute them further into the “ JavaWorld”. A JavaVicinity uses one as well, to collect
events either from the EventCollector inside a Java gateway or inside anode in
BTSim. This architecture is depicted in Figure 8 on page 32. An EventCollector as
astand alone entity can be used as areservoir of eventsto serve other entities with
large amounts of historical data, if desired. By extending an EventCollector and
overwriting the addEvent() function events may be filtered before they are inserted
into the list. Thisway it can be used to implement some sort of data mining on the
events that flow through the “ Java World”.

3.3.3 Event Exchange Protocol

EventCollectors run on very different platforms, sometimes with very limited
resources regarding memory and processing power. The protocol used to communi-
cate between the EventCollectors must take that into account. There must be some
sort of flow control, to avoid that a small device gets overrun with data. But a pow-
erful entity should still be able to receive alarge number of events. Bandwidth is
not a big issue at the moment, because Bluetooth delivers arelatively high through-
put, compared to the amount of data a node can store. Finally the protocol should
be extensible to fix possible shortcomings of the first version or extend its function-
ality.

Since events are used to spread information through the network, a packet based
protocol isused. It isheld very smple. There are two types of packets: flow and
event packets. The flow packet defines the protocol version and passes commands
or parameters to the opposite side. The event packet contains one single event,
together with some protocol parameters. Flow - and event packets are exactly of the
same length. This way no delimiter or stuffing is needed and buffer allocation on

The EventCollector Concept 33

Concepts, Solutions & Design Considerations

embedded devicesisgreatly simplified. (There is no dynamic memory allocation or
operating system available on small embedded devices.)

w wn
Event al|a|® EVENT FOUND LOST |@
Packet |=|E|Q| SOURCE COUNTERPART | " 7yyg TIME |5
o L
Byte # 01 23 9 15 19 23
o
w NUMBER |&
PF|°|2”t % N“G’:A%'ECR VERSION oF |F COMMAND
acke & EVENTS |2
(@]
Byte # 0 1 5 9 13 14 23

FIGURE 9. Flow and Event Packet

A Flow packet starts with a packet type field (0x2). Next there isamagic number to
give additional security upon connection establishment. A newly discovered neigh-
bour might not speak our protocol or know anything about the event infrastructure.
But it might still accept a connection request or even connect to us. To minimize the
chance of falsely accepting some trashy data as a flow packet the magic number
(0x42744E72) is checked. Next the version field defines the protocol version. This
iscurrently version 1. The next four bytes contain the number of events to be sent.
The command type and command field can be used to define user commands or to
exchange data. Currently these fields are not used.

3.3.4 Flow Control

Upon connection establishment an EventCollector sends a flow packet to its coun-
terpart, with the upper limit N of events it wants to receive. The counterpart then
sendsitstop N ranking events. Thisway asmall device doesn’t get overrun with
large amounts of dataif it connectsto an EventCollector with alarge history. After
theinitial exchange of events, all new events (either just generated ones or received
ones) will be propagated to the counterpart. One exception exists: if a deviceini-
tially set the upper limit of eventsto receiveto zero, it will not receive any events at
all, neither upon connection establishment nor during the connection.

The EventCollector Concept

3.3 Architecture of the EventCollector Infrastructure

—_— —
P —

HCI Connection —~ —— 9
Establishement = ___ —

—_—

Lk — —

Flow Pkg: 10 Events

Flow Pkg: 20 Events

20 Event Packets

8 Event Packets

time y

FIGURE 10. Protocol Overview

3.3.5 Flooding Algorithm

Precautions must be taken with the above described flooding algorithm to limit the
amount of data spread and to limit loops and unnecessary transmissions. There are
several approaches possible. The most efficient way would be if each node would
remember the packetsit already transmitted. The problem, as seen before, is stor-
age space on embedded devices. An EventCollector normally contains alist of col-
lected events, so why not use it for this purpose? That’s why received events will
not be propagated if the event is aready in the list. All neighbours either have
received this event already (regularly or at connection establishment) or they chose

The EventCollector Concept 35

Concepts, Solutions & Design Considerations

not to receive it by requesting atoo small amount of events at connection establish-
ment. Updates to existing events naturally will be propagated. If the possible
receiver of the event packet isidentical with the source of the event, it will not be
propagated, because this is obviously the source of the event. These mechanism
help reduce unnecessary transmissions, but cannot guarantee the avoidance of infi-
nite loops since the nodes are not obligated to store all the events, if any at al.

To definitely avoid infiniteloopsaTTL (timeto live) field is used, as know from the
internet protocol IP. It limits the amount of hops an event will take on its way
through the system, thus avoiding infinite loops. But it also limits the reach of an
event. By initially setting the TTL to a specific value anode itself can limit the
range of propagation. A mobile node like a coffee cup does not need to be known in
the whole world. On the other hand a printer might want to distribute its identity
rather widely to offer its services and also because it is always online and therefore
agood reference in an otherwise dynamic network.

The nodes itself set the initial TTL value. But the other nodes don’t know at which
value it was set. Therefor the actual number of hops taken during the propagation
cannot be calculated by the TTL alone. That’s why another counter “countUp” is
introduced. Initially it is set to zero and isincreased by one each timeit is propa-
gated. The number of hops can be used in different ways: For example an event col-
lector could use it to decide which events to throw away when no more storage
spaceisavailable. Or it can serve as arough distance estimation over several nodes.

When an event collector receives an event it checks whether it is already known by
comparing the “me”, “him”, “foundTime” and “lostTime” fields with those stored
in the event list. If they actually match, then it further comparesthe TTLs. If the
newly received version of the event hasalarger TTL it obviously took a shorter
propagation path. In this case the TTL and countUp of the stored event are updated
and the event is further propagated. This ensures, that only the shortest propagation
path isreflected inthe TTL value.

If the received event is an update packet however (i.e. different lostTime), aways
the new TTL is stored, whether it islarger or not. This avoids a possibly very long
propagation path. If this algorithm really works well in practice should be investi-
gated further. Maybe it would be better not to updatethe TTL at all. In other words:
make the fastest propagation path relevant, not the shortest one.

36

The EventCollector Concept

3.3 Architecture of the EventCollector Infrastructure

3.3.6 Error Correction

The protocol implements no error correction. Instead aready error corrected trans-
port protocols (HCI and TCP/IP) are used. Thisway no error correction needs to be
implemented

3.3.7 Shortfalls of the Protocol

Thereisapotential problem with the chosen flow control mechanism. Consider the
following scenario: Node A connects to node B and the latter can only receive a
dozen events, which will be delivered by A. Now another EventCollector with lots
of stored data connectsto node A and sends many of its eventsto it. Node A recog-
nizes them as new events and sends them to node B, as specified by the protocol.
Here node B is overrun with data. This problem could be fixed by extending the
flow packets. Node B could repeatedly send the current amount of eventsit is ready
to receive. Node A would have to keep track of how many eventsit already has sent
to B, which would introduce more states to the connection and complicate things.
Another possibility would be to implement some sort of “ Stop - and - go” protocol.
But since the Bluetooth receiver has relatively large buffers compared to our micro
controller, thiswouldn't really help.

Since the above described situation is unlikely to happen in our setup and since it
doesn’'t matter in the simulation, we chose not to fix this shortcoming. For ageneral
application however it should be done.

3.3.8 Extensionsto the Protocol

There are different provisions made for an extension of this protocol: A flow packet
includes a one byte command type field and a 10 byte command or payload.
Through this mechanism, new commands can be defined and be sent back and forth
in flow packets. Flow packets will never be propagated, they are solely for commu-
nication between two neighbours. If propagation is desired, other packet types can
beintroduced. For example one could define a“environmental data packet” to flood
the vicinity with sensor information. Such apacket would havethefields“PTYPE”,
“TTL”, “countUp” and “me” just as an event packet. The remaining 15 bytes then
could hold sensor data and sensor type, including a4 byte timestamp of the mesur-
ment. The normal flooding algorithm then could be used to propagate this informa-
tion, so only minor changes would need to be made to the event collector agorithm.
For backwards compatibility, thereis a protocol version field. This way the two

The EventCollector Concept 37

Concepts, Solutions & Design Considerations

communication partners then can agree upon a common protocol version. Or more
precisely, the higher version protocol should be able to recognize and run the lower
one. For example, it doesn’'t make sense to send an “environmental data packet” to
anode running protocol version 1 (the one we are running), because it wouldn’t
recognize it and throw it away.

3.4 Information Extraction

After having collected all these events one wants to process information to learn
something about the network or the vicinity. But what kind of information can be
expected? How exactly can it be gained? How reliable and up-to-date isit? In this
chapter these questions are discussed and three exemplary information extraction
algorithms are presented. These sample algorithms are used by the Vicinity applica-
tion to extract network information from its event collection.

3.4.1 Topology

Asdiscussed at the beginning of this chapter a snapshot of the neighbourship rela-
tions of the entire network yields the topology. A “topology relation” is either true
or false (i.e. “Neighbour or not”, “ see each other or not”). But how exactly can such
a snapshot be extracted from a event collection? One must run through the event
collection and look for events that have afoundTime prior and a lostTime after the
given moment. Thisyields only the active neigbourhoods that have generated an
update packet after the moment of interest. But what about two nodes that still see
each other, but haven't sent an update recently? Depending on the preferences the
final - flag can be taken into account. If the emphasisis set on accuracy, an event
with alost time prior to the moment of the snapshot and the final flag NOT setis
nevertheless interpreted as afinal lost event. If actuality is more important and pos-
sible errors are acceptable, alost event with the final flag NOT set may not be seen
asafinal lost event. Instead the two entities may be regarded as neighbours with an
update soon to come. Here it would be nice to know at what intervals an entity gen-
erates such updates to judge whether an update is still to come or whether the final
lost event has been lost. We haven't defined such an interval because depending on
the application the compromise between actuality and unnecessary transmissions
may look vastly different.

In addition some redundancy can also be used to improve the estimation of a sym-
metrical neighbourhood relation: if two neighbours are eventCollectors, both have

38

The EventCollector Concept

3.4 Information Extraction

generated an event (~duplex, bilateral, symmetrical), which is redundant informa-
tion. Example: to calculate the connection up time, the time spread is the union of
both time spreads.

Also it can be decided whether both neighbours are EventCollectors or whether one
of themisjust a“dumb” Bluetooth device. This can be done by observing the above
described relations. If it is symmetric (or duplex) both are EventCollectors that run
the proposed protocol and generate events. If the relation isjust unilateral the coun-
terpart islikely to be a“ dumb” device like a Bluetooth enabled phone, that doesn’t
know anything about the EventCollector infrastructure. Thisisamost certainly true
if the TTL of the event packet isn't close to zero (the difference between the TTLs
of two neigboursis unlikely to be bigger than one). Gathering information about
“dumb” devicesis possible, because events are not generated upon arendez vous of
two entities, but already, when one sees the other. (Actually, it still isarendez vous,
but on avery low level, not accessible by higher Bluetooth layers. E.g. an applica
tion doesn’t realize that it get’s inquired, even though it answers the inquiry
actively)

L ooking at the algorithm one can see, that there is no such thing as an current and
accurate topology. Depending on the latency of the propagation and the length of
the periodic update interval the necessary events are only available with a certain
delay.

3.4.2 Connection

A topology is asnapshot of the neighbourhood relation of the entire vicinity, as
seen previously. Taking atime spread (or observation interval) in place of asingle
moment a“ statistical topology” is received. We called this type of relation “connec-
tion weight”. It is avalue between 0 and 1, contrary to the “topology relation”
above, which isjust true or false. This connection weight can be interpreted as “ per-
centage of uptime”. It means for example, if two nodes A and B were 90% of the
chosen time spread visible to each other, the corresponding connection weight
between A and B is 0.9. The weight between B and A is 0.9 aswell, sincethisrela
tion is symmetrical. By enlarging the observation interval a more and more static
view of thevicinity isrevealed. Thisisadescription of who usually isaneigbour of
whom and therefore taking the habits of the involved nodes into account.

In addition to the connection weights (i.e. average up time) it could be interesting to
know the distribution of the connected periods (up time slots). This could be done
explicitly by running through the event list an calculating an additional property

The EventCollector Concept 39

Concepts, Solutions & Design Considerations

value or implicitly: Instead of just adding up the connected timeswithin the interval
one could try to more weight the more recent values. For example decreasing the
importance of older events exponentially. The received values should then be nor-
malized to be in the range between 0 and 1.

While for arouting algorithm in a dynamic network a topology with actual connec-
tionsisimportant, alocation service in abuilding is more interested in a general
overview of the vicinity. Seen under this aspect atopology is a specia case of the
connection weight (observation instant vs. observation interval).

3.4.3 Mobility

Two entities that see and loose each other very often are mobile relative to each
other. (Of course it also could be a door, that is opening and closing and therefore
interrupting the connection). It isimperative that this mobility is relative to the
involved entities and not absolute to the rest of the world. For example let’s con-
sider some nodes attached to an elevator and one at each floor. When the elevator
moves up and down, events are generated. Just by looking at these events, it cannot
be decided, which nodes are in the elevator (mobile) and which one are static at
each floor. Instead, the nodes in the elevator are static relative to each other, the
same as the ones outside. But these two groups are mobile relative to each other.
However, if only one globally static device is known, everybody else that's staying
awhile within reach will likely be static as well.

A simple way to get some measure for relative mobility isto count the lost and
found events. The resulting value is somewhat equivalent to afrequency: events per
time (1/s). This mobility value could be used for example for multihop routing. If it
is known, that node A sees node B 200 time a day, why not pass A a message for
node B? Maybe node A is sitting in the above mentioned elevator and node B is at
some floor high above, out of my own range. Again, if radio contact is very weak
and therefore flickering, a high mobility is falsely assumed. In combination with
such afrequency, the distribution of the event over time could be interesting: over
what period of time had these contacts taken place? Maybe node B has seen node A
very often during a short period of time, just because the owner of B had been
drinking a coffee near the elevator and then went back into his office. With the fre-
guency and the variation one also can estimate the latency for multihop routing.

In sparsely connected network where most nodes don’t have lots of contact with
neighbours, atopology or connection based description might not contain alot of
useful information. The only way to collect additional dataisto move around. Here

40

The EventCollector Concept

3.4 Information Extraction

such amobility value might describe the vicinity better, because there is no “ net-
work” as such.

The EventCollector Concept 41

Concepts, Solutions & Design Considerations

42

The EventCollector Concept

CHAPTER 4

Architecture and
Realization

Chapter 4 covers the software portion of thisthesis. It isdivided into 3 main parts.
Section 4.1 covers the general architecture and realization of the infrastructure for
event dissemination and collection. Section 4.2 covers the java software used to
simulate the concept and evaluate data. Finally, section 4.3 describes the software
written for the embedded hardware platform.

4.1 General Architecture Overview

The architecture of the EventCollector concept may be depicted in alayered struc-
ture. Figure 11 on page 44, shows the service layers of the concept. There are four
Layers.

In the Discovery layer, information about a node's vicinity is gathered. Various
types of information is thinkable, e.g. link states, sensor data or information about
nodes which are located within radio distance. Generated data is encapsul ated into
events which are passed up one layer for storage and propagation. For the scope of
thisthesis, only one property is considered. The only information generated is
about nodes entering or leaving radio distance.

The EventCollector Concept 43

Architecture and Realization

Layer 2 isresponsible for knowledge sharing. This layer manages local storage of

events and handles propagation of event data through flooding. 1ssues such as flow
control and preventing loops are handled here. Dependant on capabilities, more or
less data is stored.

Layer one and two together form the so called EventCollector. The functionality of
this EventCollector is the same on a small embedded device with 4kBytes memory
as on a multi-megabyte workstation or server.

In anext layer, information processing or data mining is done. The exemplary
Vicinity application uses an EventCollector as data source. Stored datais processed
into information beneficial to an application. This information may be used by enti-
tiesin the Application Layer to perform some task. Naturally, applicationsin this
layer will favorably use EventCollectors containing large amounts of data.

I
| ConnectionGraph | |

Application Layer

Information Processing

|
| Vicinity | 1
|

Knowledge Sharing

Event
Collector

Discovery Layer

Node Y

FIGURE 11. Service Layersof the EventCollector Concept

For thisthesis, the Vicinity application exemplary processes data to extract infor-
mation about frequency and duration of contacts which two nodes have with each
other. As an example entity in the Application Layer, agraphical representation of
these values has been implemented.

In Figure 12 on page 45, the general layout of participating entitiesis depicted. The
layout is subdivided into three regions. On the | eft side reside entities which belong
to the embedded Bluetooth environment. These nodes represent mobile platforms
built for thisthesis, all running a Bluetooth stack and an EventCollector. Events are
exchanged over Bluetooth using the protocol described in chapter 3.

The EventCollector Concept

JusWwuolIAuUD

yloolan|g

pare|nwis

[EIEENS) [IEENS)
JuaAg juang
101939]|0D 10199100
usng 7 Jusng

\

7N
L)
___/
/ \\\‘//

s

,,,/,,\\\,

/

suonesljdde pue

92IAJSS 10193[|0DIUSAT

ydeis uonosuuod

[CIIRENCe)
ydeln

MRIAIBAQ 3INJRBNIYIIY e BURD ¢T FHNOIL

JUSWUOIIAUS Yl10018n|g

pliom [eal

IERq]
arempleH

qoels 1d

10399100
JuaAg

SPON.Ld

W

loreInwIS1g

EIRET %) o o o
d S o |0 o) | w
ydelo Sm Smem 213 ®
33 3 alm s B o|lat—
232 2323 3 2|8 z
5 IS] < 2| R
=3 =3 m
o
S
30
@ ©
22
2
=] ‘3 _lAj
o @
=] o |0 ©
ER Smlo & 2| ®
D B Slo s @ o|lwld o
D @ (] =
Q3 2223 3 S| g z
2 2282 =| 8 Z
g S = < m =
AWupIn — g

1oAlQ
alempJeH

Xoels 19
10309]10D
wang

9pON.Ld

=

1BAIa
alempieH

Xoels 19
10109][0D
Juang

SPON.Ld

=

The EventCollector Concept

45

Architecture and Realization

The entities in the center make up layer three and four of the Service Layers. The
right side represents the simulation environment BTSim.

There are gateways between embedded units communicating over Bluetooth and
applications performing data processing running in aJvV M. They are made up of an
Ericssons Bluetooth Tool Kit connected over a serial interface to a Bluetooth stack
and EventCollector running on Linux. To simplify software development, this
application is built upon the same code base as the software running on the embed-
ded devices. In addition the EventCollector on Linux maintains a TCP/IP connec-
tion to a Gateway application written in Java. Over this connection, raw events are
passed from the Bluetooth world into the Java world.

Entities programmed in Java are built around three main classes.

1. BT_Event: Thisjava object represents an event as described in chapter 3. They
are passed among the involved EventCollectors and stored there.

2. EventCollector: The EventCollector class implements the functionality of an
EventCollector in Java. This EventCollector has the same functionality as the
counterpart programmed in C.

Normally, the EventCollector isinstantiated by an application. However, itis
possible to use the EventCollector as a stand-al one application and cascade it
with other EventCollectors.

3. EventConnection: Connections between entities written in Java are set up using
EventConnections. Two instances of this class exchange serialized BT_Events
over TCP/IP connections. EventConnections exchange data using the protocol
outlined in chapter 3. Thisis the same protocol as being used over the wireless
links.

The Gateway application interfaces the EventCollector running on Linux. Raw
Events are received over the TCP connection and are parsed. As aresult, a new
BT_Event object is created and fed into the EventCollector. The Gateway applica-
tion provides no additional functionality. Events are further processed by other enti-
ties connecting to the EventCollector and receiving the stored events.

Evaluation of the stored eventsis done using the Vicinity application. Vicinity
receives events from different EventCollectors, stores them, processes them and
thus is arepresentation of the vicinity. Datamining is performed on the stored
events to extract information valuable to the user. In the current implementation,
Vicinity extracts three values: a measure for topology, mobility and connection
weight. Thisinformation is served to the exemplarily ConnectionGraph applica-

46

The EventCollector Concept

4.2 Java Software

tion. Information received by ConnectionGraph is displayed without any other cal-
culation.

Theright side of Figure 12 on page 45, represents the simulation environment
designed for thisthesis. The BTSim application is used to simulate the protocol and
EventCollector algorithm outlined in chapter 3 and serves as a source of events.
Nodes represented by circles can be dragged around the canvas just as real-world
mobile units roam around in their environment. Asillustrated in the explosion view,
every node in the simulation contains one EventCollector and an EventConnection
to every neighbour within sight.

Outside entities like the Vicinity application can connect to anodein the simulation
using an EventConnection. Thus, every simulated node listens on a predefined TCP
port for incoming connections. Using this setup, events generated both from real -
world and simulated node could hypothetically be mixed and disseminated
throughout the system. There is no difference from an event created in the ssimula-
tion to events generated upon two Bluetooth devices meeting in the real world.

4.2 Java Software

This chapters covers classes programed for the Java environment. Entities are listed
according to relevance and grouped their functionality

4.2.1 Basic Classes for Framework

BT_Event

BT_Event represents an event that is generated when one Bluetooth node sees
another device. A BT_Event object encapsulates the following information:

¢ Timestamp when the event occurred

Source the event (BD_Addr of the node generating it)
Counterpart (BD_Addr of the discovered device)
The Type of Event (FOUND, UPDATE, LOST)

The EventCollector Concept 47

Architecture and Realization

BT_Eventlist

An EventList stores BT_Events. The classis used to operate on this event collec-
tion. It extends TreeSet and adds the method getSame().

BT_FlowPacket

A flow packet is used to communicate between two directly connected neighbors. 1t
isnever propagated. Through such flow packets flow control can be implemented or
commands and data may be passed. To extend the existing protocol with new com-
mands or packet types other than event and flow packets, a protocol version field
exists.

BT_NodeL ist

The BT _NodeList containsalist of BT_Nodes.

BT_Relation

A BT_Relation describes the relation between two nodes. Namely between
‘myself’ and the node’ counterpart’. Such arelation is described by different
attributes as explained in the BT_Node documentation, chapter 3. Here three possi-
ble relation values are implemented: Topology, Connection_Weight and
Mobility_Weight.

EventCallBack

Interface for call back between parent and children for asynchronous propagation
of events. Events can be passed back and forth through addEvent(). InsertintoCon-
nection() and removeFromConnection() is used solely between BTSim and Event-
Collectors to detect connections and (more importantly) the remote teardown of a
connection.

EventCollector

An EventCollector isaentity that gathers events from different sources and redis-
tributes them. It also generates events upon a connection establishment. An EventC-

48

The EventCollector Concept

4.2 Java Software

ollector isaclient to different event sources: It connects actively to Gateways,
FileEventServers or other EventCollectors. The collected events are made accessi-
ble to other entities through the same mechanism, so each EventCollector isa
server (i.e. an event source) aswell. One can specify different sources (host:port) in
aurlList - Vector and the port on which other clients can connect to.

EventConnection

An EventConnection opens a bi-directional ObjectStream to another entity over
TCP/IP. Then it runs a simple protocol to exchange events. It is the same protocol
used on the Bluetooth nodes. In order to handle blocking read() calls, the Event-
Connection implements Runnable and starts a thread for reading.

EventConnections are mainly (but not solely) used by EventCollectors. In order to
communicate between the parent (e.g. an EventCollector) and the EventConnec-
tion, both must implement EventCallBack. Upon connection establishment the par-
ent’sinsertintoConnectionsList() must be called. A newly arrived event can be
passed to the other side by calling addEvent(). If a connection is closed, the Event-
Connection must call removeFromConnectionsList() to notify the parent.

A referenceto aBT_EventList is passed to the constructor as a collection of events
known to the parent. Sinceit is areference, changes by the parent are noticeable to
the EventConnection. Short summary of the protocol: When the Object Streams
have been opened, aBT_FlowPacket is exchanged in both directions to indicate
how many events onewants/ is able to receive. Then the requested amount is being
exchanged. Aslong as the connection stays open, new events will be propagated to
the other side.

EventConnectionServer Thread

The EventConnectionServerThread acts as an EventServer. It opens a server socket
and waits until a connection request comesin. Then it creates a new EventConnec-
tion and startsits thread to deliver the events and potentially accept events as well.
The EventConnectionServerThread has access to the connections Vector of its par-
ent, and can therefore insert new connections into it. The management of connec-
tions (dead ones, propagation etc.) is handled by the parent (normally an
EventCollector)

The EventCollector Concept 49

Architecture and Realization

4.2.2 Classes for Evaluation of Data

BT_Node

A BT_Node represents a node in the vicinity. It hasa BT_Relation to every other
node known.

Vicinity

A Vicinity represents the vicinity of all known BT_Nodes, including the relations
between the individual nodes. The knowledge is served on the specified port to
applications. At the beginning we only have a collection of events, and we do not
know anything about the nodes (position, mobility, uptime, connection among each
other...). In order to achieve aglobal view of all nodesin the system, we process al
known eventsin the eventLigt, extracts the node names (BD_Addr) and try to calcu-
|ate some properties of the relation between each pair of nodes. At the moment two
property values are implemented: Proximity Weight and Connectivity Weight.
The Proximity_Weight is some sort of frequency of connections, i.e. how many
connections per time. The Connectivity Weight is a measure for the connection
time, in percent of connect time in the specified interval. (e.g. node A is 94% of the
time connected to node B) Examples: If we have ahigh Connectivity Weight and a
high Proximity_Weight, then the two nodes are spatial relatively close and immo-
bile, but the connection israther unstable. In case of asmaller Connectivity_Weight
and high Proximity_Weight, the devices are likely to be more mobile, but see each
other frequently. (relevant e.g. for multihop routing). A Connectivity Weight
weight of zero means, these two nodes don’t see each other and never have.

4.2.3 Classesfor Graphical Representation of Data

Connection Graph

ConnectionGraph is an application which connectsto aVicinity server to retrieve a
matrix representing the known environment and displays the retrieved datain
graphical form. The user may choose, which evaluation from Vicinity he wantsto
have displayed by choosing the appropriate entry from the View menu.

50

The EventCollector Concept

4.2 Java Software

4.2.4 Classes used in Simulation

BTSim

BTSim isan application to simulate the generation and dissemination of eventsin a
Bluetooth environment. The simulator was programmed to analyze and verify the
EventCollector concept.

Left-Click places anew Bluetooth node. A nodeisillustrated by a circle which rep-
resents the vicinity and a Bluetooth hardware address in its center. Next to the cen-
ter, alist of other nodes which the specified node is currently connected to is
displayed in parentheses.

Right-Click on the address of a node opens a dialog window which displays the
node’s configuration and all events collected so far.

Every node listens on a TCP socket for incoming connections. Nodes are moved by
dragging the center on the screen. Whenever to nodes come within each others
vicinity, a connection is opened between these nodes. When connected, nodes
exchange event data according to the underlying protocol.

An EventList containing all stored events can be saved to disk using the according
command in the File menu.

Technically, BTSimisonly used as awrapper applications around the classBTSim-
Graph. A more detailed explanation can be found in BTSimGraph.

BTSimGraph

BTSimGraph isaclass used to simulate the generation and dissemination of events
in a Bluetooth infrastructure. The simulator was programmed to analyze and verify
the EventCollector concept. Normally, BTSimGraph isinstantiated by BTSim,
which providesa GUI.

BTSimGraph paneis divided into to parts. In the upper part, a panel is displayed
which holds the graphical representation of the simulation. In the lower part, occur-
ring events appear in ascrollable text area.

The EventCollector Concept 51

Architecture and Realization

Left-click in the upper part of the pane places a new Bluetooth node. A node is
illustrated by a circle which represents the vicinity and a Bluetooth hardware
addressin its center. Next to the center, alist of other nodes which the specified
node is currently connected to is displayed in parentheses.

Right-click on the address of a node opens a dialog window which displays the
node’s configuration and all events collected so far.

Every node listens on a TCP socket for incoming connections. The listening port is
calculated by adding 10’000 to the BD_Addr. For example, node 3 can be con-
nected to on port 10’ 003. Nodes are moved by dragging the center on the screen.
Whenever to nodes come within each others vicinity, a connection is opened
between these nodes. When connected, nodes exchange event data according to the
underlying protocol.

Every node instantiates an EventCollector upon its creation. The EventCollector
collects events and handles any connections to other nodes or to the outside of the
simulation. BTSimGraph takes care of the graphical representation of nodes and
actions such as clicking and dragging thereof. Upon two nodes entering each others
vicinity, BTSimGraph signals the EventCollector to open a new connection.

BTSimNode

BTSimNode is the class used to represent a Bluetooth device for simulation. A
BTSimNode object encapsulates following Information:

e Datafor graphical representation in simulation
¢ A reference to an EventCollector
e Vector of BTSimNode to store all currently connected nodes

BTSimNode isthe simulation counterpart toaBT_Node which is used to represent
area-world node. Just as real nodes, BTSim Nodes use EventCollectors to handle
connections and event dissemination to other nodes.

Upon creation, every node initiates an EventCollector which startsto listen on a
TCP Socket. The port number defaults to 10000 + BT Address. This Socket is con-
tacted by EventCollectors belonging to other nodes when establishing connections
to exchange events. This Socket can be contacted even from the outside of the sim-
ulation. E.g events from real-world Bluetooth nodes can enter the ssimulation
through such a connection.

52

The EventCollector Concept

4.3 Embedded Software

BTSimNodeDialog

Display a Dialog box containg the node’s preferences and all events currently
stored.

4.2.5 Gateway

Gateway is an application which connects the Java world to the bluetooth world.
The BTNode application which runs on Linux contains the Bluetooth stack and an
EventCollector written in C. Events received over Bluetooth connections are sent
over aTCP stream asraw datato the this application. Gateway parsesthisincoming
stream and feeds the data into another EventCollector which can be connected to
from the Java world.

4.3 Embedded Software

Chapter 4.3 covers software written for the embedded platform. It is subdivided
into sections covering the drivers, the application itself and Bluetooth stack running
on the device. First, general notes regarding embedded software are given. Second,
drivers implemented for the hardware platform are described. Next, the port of
AXxis's Bluetooth stack to the AVR platform isillustrated. Section 4.3.4 describes
the approach to implement a simple scheduler as operation system substitute. Last,
section 4.3.5 specifies the EventCollector running on the embedded hardware.

4.3.1 General Notes on Embedded Programming

Embedded programming on the AVR CPU put up several stumbling blocks. Being
restricted in memory a number of compromises had to be found. Some of the notes
presented here apply generally to embedded programming as others only apply to
the AVR MCU.

One major limitation isthe lack of any operating system on the embedded platform.
Memory allocation using malloc() isimpossible. Some effort has to be put into
porting of applications which use dynamic memory allocation. Further, multi
threading or pseudo concurrency of tasks has to be implemented first.

The C-Library which is provided for the AVR Architecture is simplified. Functions
like printf() sprintf() or scanf() are lacking. Embedded platforms usually do not
have a‘ standard output’ method as a console which isfound on PC’s. Output of

The EventCollector Concept 53

Architecture and Realization

debugging information has to be implemented before programming of an applica
tion is started.

Development of new software is done using cross compilation on a different host
platform. Even though the GNU C Compiler may be used for different target plat-
form, several difficultiesarise. A ‘Long’ defined on a 32 Bit Operating System may
not be of same size on the embedded platform. This imposes the usage of direct
specification of the variable size such as u32 for an unsigned 32 Bit variable.
Another problem is byte alignement. On advanced platforms such as SPARC or
X86, byte alignement is used to speed up memory access. On an 8Bit architecture
such asAVR, this does not only waste data memory but may also render malfunc-
tioning programs due to different size of structures on host and target platform.
Using the specia attribute“__attribute _ ((packed))” on critical sections or mem-
bers of structures eases this restriction.

Asthe GNU C Compiler is not intended to be a compiler adapted to embedded plat-
forms, optimization is usually donein terms of execution speed or code size.
Although memory is often the largest restriction, there is no optimization for mem-
ory usage as would be in a compiler developed especialy for embedded applica
tions. Tests have shown that using optimization flags “-0O6" helpsin reducing
memory as a side effect to improving execution speed. Never the less, some
improvement could be achieved using a specially designed compiler.

Code often hasto be refined for embedded use. Next to reducing static memory size
of variables, stack usage isamajor concern. Code such as“for (int i=0, i<4, i++) {
... } “isperfectly right for 32Bit platforms such as Linux, since memory accessis
donein words of 32Bits anyway. On 8Bit architectures, using an unsigned char as
counting variable is does not speed up memory access by at |east afactor of 4 but
also economizes 3 Bytes of stack used. Another stumbling block is heavy nesting of
code. Using encapsul ation renders high-quality code but wastes large sums of
memory, since stack grows for every nested call of afunction. Another issue are
return values of functions. Using integers as return value for {-1,0,1} stresses mem-
ory requirements of the stack enormousdly.

Another interesting issue is the Harvard Architecture concept of the AVR Micro-
processor which uses separate buses for program and data memory access. Next to
several advantages, the harvard architecture has adrawback. Strings used for output
must be loaded in data memory (RAM) since functions can not access data stored
in program memory (Flash). Thisis done by an initialization routine called auto-
matically upon power-up of the CPU. Using explicit debug messages, memory
reguirements after the first compilation on the target platform were stunningly high.

The EventCollector Concept

4.3 Embedded Software

Few other things must be kept in mind. Due to the simple design of the core, the
MCU does not support traps, software interrupts, floating point operations or a ker-
nel mode.

4.3.2 Drivers

This chapter covers the design and implementation of software driversfor the
embedded hardware platform.

Hardware Setup [Avr.h, Avr.c]

Auvr.c contains functions to set up the hardware platform. AVR _init() is used to
enable output on debugging ports and enable interrupts.

Additionally, three special code fragments are defined in Avr.c. As stack memory
usage was quite an issue, “REPORT_SP” reports on the stack pointers value.
“REPORT_SP” prints a debug statement out on the serial interface indicating the
value of the definition “INIT_SP_CHECK” initializes this reporting. Every call to
“CHECK_SP" compares the current value of the stack pointer register to the con-
tent of this variable and decrements the variable if the stack pointer indicates a
lower memory address

Debugging Functions [Avr_Debug.h, Avr_Debug.c]

Avr_Debug.c provides severa functionsto print out debug information in string,
char array or hexadecimal format.

LED Driver [Avr_LED.h,Avr_LED.c]

LED’s on both hardware and the STK are interfaced using the LED driver in
Avr_LED.c. After calling LED_init() which enables the appropriate output port,
LED’sareturned on using LED_set() and turned off using LED_clear(). Note that

the LED’s on the development board STK 300 have inverse logic. These are turned
on whenissuing LED_clear() and vice-versa.

Pseudo Real Time Clock [Avr_Time.c, Avr_Time.h]

The EventCollector Concept 55

Architecture and Realization

The events generated for the topology service need an exact timestamp. (See chap-
ter 3). The microprocessor’s Timer/Counter 0 can be clocked asynchronously from
an external clock. This enables us to use thistimer as a counter which isincre-
mented by an even divisor of one second and thus ‘ count’ time on the platform. The
difference between two counted values provides an exact time spread between two
events.

Two boundary condition had to be considered when designing the pseudo real time
clock:

e granularity of time
e number of interrupts

The number of timer interrupts should be kept as small as possible, since interrupt
nesting is not enabled on the platform. Even though the execution of the interrupt
handler for SIG_OVERFLOWO takes max 50 instructions, this delay is not negligi-
blefor other interrupts which have harder timing constraints. Further, the timer con-
tinues to run in PowerSave mode. Also in terms of power consumption, thetimethe
CPU is actually computing should be kept minimal and thus the number of inter-
rupts be small.

Implementation of the Pseudo Real Time Clock

Timer/Counter 0 is clocked externally by a32.768kHz crystal, afrequency whichis
an even multiple of 1 second. (The 32.768kHz crystal iswidely in watches etc. to
provide a precise 1s signal)

A long value (32 Bit) is used to count time. The variable mseconds represents the
counted milliseconds since power up. Timer/Counter O's external clock of
32.768kHz is prescaled by 32. Thisresultsin a counter which isincremented every
1/1024 seconds. Every 256th increment, Timer/Counter O overflows and generates
an interrupt. The interrupt handler increments the variable mseconds by 250. This
yields a exact time in milliseconds with a granularity of 1/4 second.

Time_get() returns the exact time in milliseconds since power up. Thisis done by
adding the converted value of Timer/Counter 0 to the variable mseconds. The value
of Timer/Counter 0 has to be converted, as this Timer counts 1/1024 seconds and
not true 1/1000 seconds due to the external clock.

56

The EventCollector Concept

4.3 Embedded Software

Power Management [Avr_Power.c, Avr_Power.h]

In portable devices, power consumption is one of the most crucial issue. While
applicationsin normal environments busy-wait for the next event, we would like to
sleep in a state without using energy until the next event occurs.

ATMegalO3 provides severa types of sleep mode.

e |dle Mode stops the CPU but for the interrupt system which continues to oper-
ate. Calling POWER _idlg() puts the system to sleep until the next interrupt
occurs. This may be an interrupt resulting from activity on an external interrupt
port or atimer which overflows.

e Power Down and Power Save mode stop the CPU but for the external interrupt
system. The CPU will not wake up on interrupts resulting from internal sources
such astimer overflows etc. In these modes, power consumption drops almost to
zero, asthe MCU Master Clock is shut down.

Thismodeis perfect for long-term shutdowns of the device. Since Timer/Counter O,
the pseudo Real time Clock, is clocked asynchronously, interrupts generated from
comparison or overflow are counted as external interrupts. This would ensure that
time ‘does not get lost’. Whenever external activity occurs, the device would ‘wake

up'.

When sending out data via Software UART, we need the interrupts on Timer2. If
Power Down mode is used, we would not awake on this interrupt and data sent out
would get garbled. In this case, we would have to be much more careful when and
where POWER _idle() routines may be called without any harm.

We decided only to implement Idle Mode, as this mode posed the least problems.
Moreover, the bluetooth modul e consumes much more energy than the MCU.
Implementation of power shutdown in the bluetooth module yields much better
results.

Due to time limitations, power management could not be processed to the end.
There are afew additional ideas which could be implemented in a next release;

e Use of Power Idle or Power Save mode

e Reduction of CPU clock inidle state

e Shutdown of bluetooth modulein idle state

e Shutdown of external componentsin idle state

The EventCollector Concept 57

Architecture and Realization

Implementation of Power M anagement

POWER _idlg() makes the MCU enter the Idle Mode, stopping the CPU but allow-
ing UART, Timer/Counters, Watchdog and the interrupt system to continue operat-

ing.

This enables the MCU to wake up from external triggered interrupts as well as
internal ones like the Timer Overflow and UART Receive Completeinterrupts. The
energy consumption of the MCU will drop to half of the value of normal operation.
See “Electrical Characteristics’, chapter 6.

Serial Port over Hardware UART [Avr_UART.c, Avr_UART.h]

The ATMEGA MCU provides one Hardware Universal Asynchronous Receiver
Transmitter (UART). Using the built-in hardware UART the CPU transfers com-
plete bytes to the UART. All timing-related tasks, such as sampling incoming and
sending of bitsis done without any intervention of the CPU. Furthermore, full
duplex transfers are possible.

The driver of the Hardware UART must be programmed in such a way, that receiv-
ing and sending of data is handled in the background without any intervention of
the user application. Data exchange between user application and hardware driver
is done using a shared buffer.

To simplify porting of the bluetooth stack which iswritten for Linux, unix system
call semantics are used as interface to the driver.

Special care should be taken towards synchronization. The driver must be imple-
mented in such away, that data may be written into the buffer without interference
with the sending interrupts, which retrieves data from the buffer. Further, the buffer
must be allocated statically.

Implementation of the Hardware UART

The Hardware UART isinitialized by calling UART _init(). UART _init() initializes
the buffers for incoming and outgoing data, enables the interrupts needed for com-
munication and sets up the UART for communication with 57600Baud.

58

The EventCollector Concept

4.3 Embedded Software

User applications transmit data using the UART_write() function call. This func-
tions stores datain the circular buffer and enables the UartDataRegi sterEmpty
UDRE interrupt. The MCU interrupts as soon as the UDR is empty and startsto
send out thefirst byte. The UART_write() function returns while the content of the
buffer is transmitted byte by byte without any further user intervention.

Recelving of datais handled in asimilar way. UART _init() enables the Received-
CharacterInterruptEnable RXCIE. For every byte received, the MCU interrupts and
stores the incoming datain a second buffer, without any user intervention. This sec-
ond buffer isinterfaced via UART _read function call.

Software Serial Port [Avr_SUart.c, Avr_SUart.h]

Our hardware design needs a second seria port. Since the ATMega 103 MCU con-
tains only one UART, a second UART has to be built in software. In terms of tim-
ing, transmission of data over an asynchronous serial lineis a delicate issue.

At 57600Baud, the bit-time is 17.3usec, which equals to 64 CPU instructions at
3.6864 MHz. Sampling of data must be within 1/4 of the bit-time (16 instructions).
Thislatency is only achievable, if the CPU would busy-wait during the transmis-
sion of one complete byte, including start- and stopbit. This again would resultin a
maximum interrupt latency of 10* 17.3 usec (startbit, 8 databits, stopbit), as nested
interrupts are disabled on the CPU. An interrupt latency of 173usec istoo much for
time critical applications. Implementing a 57600Baud software UART with given
constraints is not feasible. Not to think of implementing full-duplex communica-
tion.

A resource found on the Internet confirms this assumptions. In [7] afull duplex
software UART running at 38400 Baud is programmed in assembler for aMCU
clocked with 11Mhz. This code needs more than 30% CPU performance when
sending and/or receiving data.

Under these circumstances, we decided to implement a software UART communi-
cating at 9600 baud half-duplex with the bluetooth module. Running at lower speed
has several advantages:

e interrupt timingislesscritical
e buffers may be kept small

The EventCollector Concept 59

Architecture and Realization

e at high speeds, Ericssons's bluetooth module may run out of synchronization.
e onboard wiring isless prone to errors/ interference
e implementation possible in high-level language

Ericssons's bluetooth module requires full-duplex communication. Even at a speed
of 9600 baud, thisis quite tricky. Bit-time at 9600 baud is 0.104msec which equals
384 CPU instructions. Assuming that sampling of data must be within 1/4 of the
bit-time (96 instructions), follows that interrupt routines to sample or send out data
must be quite short. Any other interrupts excepted, these timing constraints could
be accomplished by using asecond timer. Asthere are only 3 Timersin the MCU of
which one is used asrea time clock, we decided to reserve one counter for future
use. Thus, communication over the software UART is handled as half-duplex.
While sending data. the Bluetooth module is forced into half-duplex operation by
using flow-control to pretend that no buffer space is available for incoming data

Flow-control can be either implemented in software (Xon-Xoff), where flow pack-
ets are exchanged between sender and receiver or hardware (RTS-CTS) where flow
is stopped viawired connection. Both techniques are further explained in [8] [9].

Off the shelf, Ericssons bluetooth modul e assumes hardware handshaking asin
RTS and CTS signals. RTS (Request To Send) signal is set by the receiver on low
buffer space. The sender checks CTS (Clear to Send), which iswired to the sender’s
RTS signal, before sending. Figure 13 on page 61 shows a detailed signal analysis.

° 2 2 2 check CTS 2
= fu] L o before continuing L
w (2] w (%]
TXD ° data data
Signal So
5 S
ol
T8
2
RTS
Signal

60

The EventCollector Concept

4.3 Embedded Software

FIGURE 13. Overview of RS232 Signalling

Flow control signals RTS and CTS are used to force the bluetooth module into hal f
duplex. Whenever dataisto be sent out, the MCU indicatesto the bluetooth module
by unsetting CTS, that no dataisto be sent. After waiting a short period, the MCU
may start sending without being interrupted by incoming data.

start stop start
IDLE bit bit bit

104 usec

LSB
MSB

EEREREEER

ExtInt4 Timer2 Compare interrupts

v

<
<

1.04 msec - bit sequence of "T" (ascii 84)

FIGURE 14. Bit Signalling of RS232 Communication

Figure 14 on page 61 specifies the bit sequence of incoming data. As seen above,
timing is crucial. RXD, the receiver signal iswired to an external interrupt port. A
falling edge at the external interrupt, designates an incoming start-bit. Theinterrupt
handler starts a counter which generates TimerComparel nterrupts after every
104usec, which amounts exactly to one bit-time of 9600 Baud.

In afirst implementation, the start-bit was sampled by setting the timer to 1/2 bit-
time. Sampling of the startbit is needed to filter out spikes on the RXD wire, which
generated interrupts. Signal analysis showed, that under certain circumstances this
led to erroneous behavior due to other interrupt handlers which delayed the pro-
cessing of the timer interrupt. Recall, that 1/2 bit-time will only take 180 CPU
instructions. In a second revision, the start-bit was sampled right after the occur-
rence of the external interrupt.

Under normal conditions, the first bit should be sampled 1.5 bit-time after the
occurrence of ExtInt4 and 1 bit-time thereafter. Once again, signal analysis showed
too much delay if other interrupt handlers were serviced between the sampling of
start-bit and the first bit of data. Even though the timer was not stopped and
restarted between sampling of data-bits, under heavy load of the embedded plat-

The EventCollector Concept 61

Architecture and Realization

form, delay accumulated and led to false data. A solution to this problem would be
the nesting of interrupts. On the other hand, this would have led to much more com-
plicated interrupt servicing routines, since interrupts work on the same data struc-
tures. Another issue in nested interruptsis stack size. As memory is very tight, it
seemed advantageous to omit nesting.

In athird revision, of the interrupt handler, sampling of data was started exactly 1
bit-time after verifying the startbit at the beginning of Extint 4. The delay caused by
setting up the interrupt handler and saving the registersis enough to start sampling
after one bit-time. This results in TimerComparel nterrupts being serviced after
about 1/3 of the bit-time of every data bit. This|eaves enough room for other inter-
rupts being serviced, as shown in Figure 14 on page 61 between bit 5 and 6.

Implementation of the Software UART

The Software UART isinitialized by calling SUART _init(). SUART _init() initial-
izes the buffers for incoming and outgoing data, enables the interrupts needed for
communication and sets up the UART for communication with 9600Baud. Hard-

ware flow-control (RTS/CTS) is enabled by default.

User applications transmit data using the SUART _write() function call. This func-
tions stores datain a circular buffer and returns. The outgoing buffer is flushed by
calling SUART _flush(). SUART _flush enables a timer which will interrupt afew
cycleslater. The timer is used to start transmission asynchronously in the back-
ground without busy-waiting until data has been sent out. As soon as the timer
overflows, the according interrupt handler is called. The interrupt handler is pro-
grammed as a state machine, since incoming and outgoing bytes use the same timer
and thus the sameinterrupt handler. The state machine handles flow-control and the
timer settings to sample or send out hits.

Receiving of datais handled in asimilar way. SUART _init() enables the External
Interrupt 4, which interrupts on afalling edge on the software UARTS RXD signal.
A timer is started to handle the sampling of incoming bits using the state machine
of the interrupt handler.

Buffer size for sending an receiving data is defined to 32 Bytes. Thisvalueis not
very crucial, since the software UART supports Hardware flow-control. Attention
should be made to the two watermarks
SUART_RX_BUFFER_HIGH_WATERMARK
SUART_RX_BUFFER_LOW_WATERMARK defined in Avr_SUart.h. These two

62

The EventCollector Concept

4.3 Embedded Software

watermarks define a hysteresis for flow-control. Since sending of datawill not stop
immediately after the RTS signal has been unset, flow-control must always check
for buffer space in advance.

Specia attention must be paid to timing. As discussed an the last section, bit-time
of a9600 Baud signal is 1.04ms which amounts to 384 CPU instructions. Nested
interrupt routines are not enabled by default. Assuming that sampling of data must
be within 1/2 of the bit-time (192 instructions), no interrupt handler may be larger
than 192 instructions. Thisleaves enough time for software UART interrupt handler
to complete without delaying the next sample too much.

Debugging the interrupt handler is problematic! For the same reason mentioned
above, we are not able to output debug messages while being in the interrupt rou-
tine. Debugging of the software UART was handled by setting / unsetting LED’s
according to error conditions.

Analog Digital Converter [Avr_ADC.c, Avr_ADC.h]

The MCU’sAnalog to Digital Converter is accessed straight forward. After calling
ADC init(), every channel of the ADC can be accessed using ADC_read().

ADC read() starts a conversion on the selected channel and busy-waits until the
conversion is done. As the sampling rate (set in ADC _init()) amounts to 100kHz,
one sample takes up to 10 microseconds.

Random Number Generator [Avr_Random.c, Avr_Random.h]

For certain applications, random numbers are needed. Avr_Random.c implementsa
simple pseudo random number generator. A call to Avr_srand() seeds the number
generator by sampling 500 consecutive values at an unconnected port of the analog
to digital converter. These 500 samples are added to an 8 Bit variable. Random
noise combined with wrap-around of the 8 Bit variable yields numbers distributed
in the range 0 to 255. As the sampling of 500 measures takes quite long, the next
number in the random sequence is generated by adding 187 to the initial seed. 187
suits quite well, asit is a prime number and about 2/3 of the maximum range of an
8Bit value.

The EventCollector Concept 63

Architecture and Realization

4.3.4 Scheduler

In afirst outline of the software structure, the system was built around a state
machine which reactsto activity either on the software UART connected to the
Bluetooth module or the hardware UART which may be connected to an outside
control. As the Bluetooth stack is reactive, this structure would have served the pur-
pose. Simple as the solution seems, several issues can not be dealt with. Handling
of erroneous behavior of the Bluetooth modules or time-outs are very difficult. Fur-
ther, the system’s functionality would not have been very extendible, as there would
have been no way to interrupt a blocking wait for more input data to execute some
additional user code.

Implementing (or porting) an operation system to our platform seemed one possi-
bility. To simplify matters, we decided to port a simple scheduler which solves the
most significant problems without implicating alarge overhead of a complete OS.
Applications as well as the Bluetooth stack may register callback functions to the
scheduler which are executed upon occurrence of defined events such as activity on
either UART or time-outs. The mentioned scheduler already existed in a piece of
software written by one of the Ph.D. students of the group. Porting to the AVR plat-
form was accomplished by our tutor. Further reference of the scheduler may be
found in documented C source files.

4.3.4 Bluetooth Stack

Axis Communications corporation maintains a Bluetooth stack[6] released under
the GNU General Public License. This stack is used in Axis products which are
based on Linux. Being the only open source software stack at thistime, it was used
as basisto the port for the AVR architecture.

Axis' stack provides both kernel module and a user space application for the Linux
operating system. For the port, only the user space portion of the code was used.
Major difficulty posed the stack’s widespread use of dynamic memory allocation
and Linux system calls. Furthermore, the stack was not laid out for minimal mem-
ory footprint.

Data structures which relied on dynamic allocation of memory were reprogrammed
to use static structures. Additionally, these structures were reduced to minimal
memory usage. Linux system calls such as select() had do be emulated by the
scheduler described in the previous subchapter.

The EventCollector Concept

4.3 Embedded Software

User applications interface the stack using L2CAP layer functions. Even though
HCI would have been easier to implement and less stressing on memory require-
ments, availability of the HCI interface is not a requirement for Bluetooth compli-
ancy and thus not available on every Bluetooth implementation.

Dueto the limited time of this thesis, the Bluetooth stack was ported to the hard-
ware platform by our tutor.

4.3.5 EventCollector on the Embedded Device

The application that runs on top of the scheduler isbasically an EventCollector with
the same functionality and tasks asin Java. However, there are quite afew particu-
larities. There are limited resources, some problems with Bluetooth in general and

the ROK from Ericsson in specific. In Chapter 6.3 these problems are described in

more detail.

The Bluetooth module must not be transmitting in order to be seen by aninquiry by
an other module. In addition to that, the ROK must not have an ACL connection
open. At the bottom line, we need to be IDLE most of the time by keeping transmis-
sions and inquiries at aminimum. That is what the state machine depicted in
Figure 15 on page 66 was designed for.

The main loop consists of three states: IDLE, INQUIRING and PUSH_LOOP.
Upon startup the micro controller and the Bluetooth module are initialized. Then
the IDLE state is entered. Here we are ready to respond to inquiries (unnoticed by
the application) and to accept incoming connection requests (through
event_collector_connect_ind()). After arandom idle period between about 12 to 25
seconds atime-out occurs (timeout_ch()), an inquiry isinitiated and the state
machine becomes INQUIRING.

Each inquiry result is passed to the application through aing_result_cb() and is pro-
cessed immediately within that function. When the inquiry processis finished, the
application is notified by the inq_complete_cp() call back function and makes a
transition to PUSH_L OOP.

The EventCollector Concept 65

Architecture and Realization

ing_result_ch()
timeout_ch() ing_complete_ch()

PUSH
LOOP
-
‘\\\\\\\\\\-__________,’,,,////// o
(0]
e
_
. - @
finished loop <] c
6 c
o
|
—
<1 8
£ N
5]
—_ c =
oo 5] 5 o< %
2§ ° E§ =
oo O o S
|SEN3) L O o G
2o g2 5!
c c c c S
S5 SIS 2
Q O o o c
2 2 7 5
U|UI U|U| ol
[ONS) (ON®)
w g w 8

PULL
CONN

PUSH
CONN

CONFIG CONFIG

g_ind()
g_cfm()
g_ind()
g_cfm()

== =it
c c c c
8I 8I 8I 8I
O O
| 8 w 8
PULL PUSH
ESTAB- ESTAB-
LISCHED LISCHED
EC_receive_data() EC_receive_data()

FIGURE 15. EventCollector State Diagram

66

The EventCollector Concept

4.3 Embedded Software

Here we loop through all the neighborsin the now updated neighbors list and try to
connect to them. This of course only works, if the neighbor is within radio range
and in IDLE state. If the connection establishment is successful, events are
exchanged through the previously described protocol. Immediately thereafter, the
connection is closed and the next neighbor will be processed until the wholelist is
done. Then the IDLE state is entered to wait for the next time-out to trigger the
same chain again.

Whilein IDLE aremote connect request is indicated through
event_collector_connect_ind() and the PULL_CONN_STATE is entered. Now the
connection parameters are being negotiated (the L2CAP connection isin the inter-
nal state CONFIG, as described in the L2CAP specification). When one
event_collector_config_ind() and one event_collector_config_cfm() callback are
received both without error (status = 0) then the connection is ready, reflected by
the state PULL_ESTABLISHED. All local events are sent and then remote events
are received. The buffer space in the ROK are definitely large enough for this, but
thereisapotential deadlock if event data gets much bigger. If atermination packet
is received the connection will be closed through 12ca_disconnect_req(). Also a
event_collector_disconnect_ind() indicates a remote disconnect request, and it will
be returned to IDLE.

The PUSH_L OOP stateis the counterpart of the above described PULL states. The
connection establishment and teardown is very similar. The solution with the termi-
nation packet has been chosen because (unlike TCP on the Java EventCollector) a
disconnect request closes the whole connection, not just the one simplex half. All
pending datais discarded. This doesn’t matter for the data that the terminating side
just has sent, because the termination request will reach the opposite side only after
the data has arrived there (chronologically). But the data sent by the other side will
be lost.

Thetime-out value is chosen in away that ensures that the state machineis IDLE
for about 1/2 to 2/3 of the time.

In the BTSim simulation environment the system timeis used as aglobal time. On
the embedded platform no such global time is available since there isno real time
clock, time server or any other way to get an accurate time. This problem was
solved rather pragmatically. All time stamps are stored in local time, i.e. in millisec-
onds since startup. Before transmission of an event to some other BTNode the lost-
Time and foundTime are converted into ages of the events (i.e. they are subtracted
from local time). The receiving node then transform the ages into his own local
time. Under the assumption that data transmissions only take a short time, the inev-

The EventCollector Concept 67

Architecture and Realization

itable error is small. When comparing foundTimes and lostTimes from different
eventsit must be taken into account that these times are not absolutely accurate. In
our case the tolerance was chosen to be 1 second. So, if two events have the same
“me” and “him” BD_Addrs and foundTimes that differ by less than 1 second, it
must be the same event.

68

The EventCollector Concept

CHAPTER 5

Technical Realization of
the Embedded BTNode
Hardware

To test the EventCollector concept in alife environment a hardware containing an
Bluetooth module and a microprocessor was built. The board is used as amobile
demonstration unit. The battery-powered device may be carried around to test real-
world setups.

Asthe focus of thisthesislies on the infrastructure and not the hardware itself, we
searched for a partner who would layout the board according to our needs and take
over responsibility for manufacturing. This partner was found in a PhD student at
the Computer Engineering and Networks Laboratory TIK at the department of elec-
trical engineering of ETH.

Chapter 5 is subdivided into several sections. Section 5.1 covers design consider-
ations for both hardware components and design. In section 5.2, first steps with the
chosen hardware are explained. An exhaustive reference to the built hardware is
found in section 5.3. Next, section 5.4 lists partners and external contacts which
helped in building and manufacturing the embedded hardware.

The EventCollector Concept 69

Technical Realization of the Embedded BTNode Hardware

5.1 Design Considerations

Several considerations had to be made while designing the hardware for the project.
Section 5.1.1 lists some general issuesin the design process. Next, the selection of
the microprocessor platform is covered. Section 5.1.3 discusses other criteriawhich
were considered for the remaining hardware components.

5.1.1 General Issues

The following criteria, listed in alphabetical order, influenced the hardware design:

short term availability

The diplomathesisislimited to 16 weeks. Even though hardware considerations
started before the officia start, the selected hardware must have been available
quickly.

current drain

The unit will be used in amobile environment. As current drain isacrucial issue
for all battery powered devices, components with low power consumption were
chosen.

ease of use

The hardware should be as ssmple as possible. Since the hardware design was
only a means to an end, components with minimal external circuitry were pref-
ered.

microcontroller features

The unit should be applicable in miscellaneous settings. Having the Smart-Its
[10] project in mind, a microprocessor which provides universal 10 Portsand /
or analog input / output was preferred.

internal memory in microprocessor

One main issue was finding a Microprocessor with internal RAM and program
memory. Timing is very crucial to designs with external memory components.
This complication was avoided by choosing a CPU with internal memory. Most
micro controllers haveinternal RAM, but only very few. Components with more
than 1kByte RAM are scarce. First examinations of AX1S's Bluetooth stack
implementation yielded memory requirements of at least 2kBytes.

in-circuit programmability

To accommodate the universal usage, the device must be (re-)programmablein
thefinal circuit.

70

The EventCollector Concept

5.1 Design Considerations

e price
Having the Smartl T project in mind, these devices could be used in large quan-

tities. Asfor our demonstration units, price is not amain issue, but for larger
scale production, low priced devices are chosen.

° speed
The Bluetooth stack needs some processing power. As it showed, processing

speed is no limitation for microprocessors meeting the requirements stated
above.

e 3.3V Supply

Since Ericsson’s Bluetooth kit runs on 3.3V the entire circuit is based on 3.3V
technology. Thisreduced complexity by maintaining only one power plane and
voltage stabilization circuitry.

e availability of third-party software / hardware, application notes, compilers

Development environments, compilers and debugger etc. are normally quite
expensive. Since the software and Bluetooth stack iswritten in ahigh level 1an-
guage (C), aANSI C compiler is needed. The GNU Project’s C Compiler gccis
the preferred compiler for further devel opment.

e Number of hardware UARTS

For external communication of the device, serial RS232 is used. Serial commu-
nication is state of the art for embedded devices. Further, the Bluetooth module
provides RS232, USB and 12C as interface. Since RS 232 can be debugged
quite easily, this interface was chosen for communication with the bluetooth
module. Altogether, the microprocessor should ideally have 2 hardware UARTS.

5.1.2 Selection of the Microprocessor Platform

Browsing the webpages of several know processor manufacturers, it turned out that
the design criteria are hard to meet. Four MCU’s which met most of the criteria
stated above, were taken into the short list:

The EventCollector Concept 71

Technical Realization of the Embedded BTNode Hardware

TABLE 7.
[112] [12] [13] [14]
Triscend Mitsubishi Microchip Atmel
E5 M16C Pic 17C756 ATMegalO3L
Size (pins) 128 100 64 64
RAM / Flash 8k / 256k 20k / 256k 1k / 32k 4k / 128k
Power 35mA @ 10mA @ 5mA @ 5mA @
Consumption 10MHz, 3.3V | 10MHz, 3.3V | 4MHz, 3.3V 4MHz, 3.3V
1/0 Ports 10 10 5 4
AD Converter | 0 16 * 12Bit 4* 12Bit 8* 10 Bit
Hardware 3 2 1
UART
Price p. U. $60 $52 $35 $17

Triscend t5 is afull-grown 16Bit microprocessor with an incorporated FPGA. The
programmable logic in the processor is very appealing - unfortunately the compo-
nent drains way too much current for mobile environments. Unfortunately, this

MCU incorporates only 1 Hardware UART

Similarly, Mitsubishi’s M 16C met most requirements but current drain. Further,
both mentioned parts are packages with 100+ pins, occupying alarge amount of
space. It seems that both parts are quite new using a modern architecture. The
downsideis, that no third-party development tools or applications were found on
the web. Another negative aspect is the price of both components and the complex-
ity of these 16Bit MCU’s.

Microchips PIC 17C756 is the flagship of awhole range of 8 Bit microprocessors.
This component met all requirements mentioned above but memory size. The
included 902 Bytes of RAM is not enough for our project. Microchips harvard
architectureiswell suited for small embedded projects with very low RAM require-
ments. Although external RAM is possible, it cannot be used in memory mapped
mode - external memory access need special memory fetching instructions. This
would have posed large problems on software design and the used compiler.

The PIC microprocessor is used in numerous applications. Together with an exist-
ing GNU C compiler, this microprocessor would have been the ideal platform, not
taking the memory problem into consideration.

72

The EventCollector Concept

5.1 Design Considerations

The device which was finally chosen, isATMEL'sATmegalO3L [14]. Most require-
ments stated above are met. The largest downside is, that this device has only one
hardware UART. The second UART which is needed, must be programmed as a
software UART

The chosen platform includes:

e 121 Powerful RISC Instructions

e Upto4 MIPS Throughput at 4 MHz

e 128K Bytes of In-System Programmable Flash Memory
e 4K BytesInterna SRAM

e 4K Bytes of In-System Programmable EEPROM

e SPI Interface for In-System Programming

e On-chip Analog Comparator

e Programmable Serial UART

e Rea Time Counter (RTC) with Separate Oscillator

e Three Timer/Counters with Separate Prescaler and PWM
e 8-channel, 10-bit ADC

e | ow-power Idle, Power Save and Power-down Modes

e Software Selectable Clock Frequency

e External and Internal Interrupt Sources

e Power Consumption of 5.5mA (active) and 1.6mA (idle) at 4 MHz
e 32 Programmable |/O Lines

e Operating Voltages of 2.7 - 3.6V

5.1.3 Hardwar e Design Considerations for the BT Node Platform

The intended use of the BTNode Hardware extends beyond the scope of this
diplomathesis. The platform should be deployable for other projects, specially
since Bluetooth kits are very rare at the moment. In afirst step, a catalog of require-
ments for our intended usage was created. Second, other features intended for
future use were listed and if possible, included into the hardware design. As a start-
ing point for our own design, we used the schema of the STK 300, the evaluation kit
sold by ATMEL.

The EventCollector Concept 73

Technical Realization of the Embedded BTNode Hardware

The following enumeration lists these considerations in sequence of their impor-
tance.

1. Tokeep current drain as small as possible, the platform isbuilt using 3.3V parts.
Both Ericsson’s Bluetooth module and the low power version of ATMEL's
microprocessor, ATMegalO3L run on 3.3V. A low-dropout voltage regul ator
attached to an industrial 3.6V Lithion-lon battery provides constant power for
the board.

2. Thelow power version of the microprocessor can be clocked up to 4 MHz.
Using a 3.6864MHz crystal, most commonly used baudrates can be generated
by the UART without any divergence. See page 64 of [14].

3. The generate an accurate timing signal, the possibility to externally clock
Timer/Counter 0 is used. Thus, asecond crystal of 32.768kHz is attached to the
MCU. The 32.768kHz crystal iswidely used in watches etc. to provide a precise
1ssignal.

4. The platform must bein-system programmable. That is, the content of the Flash
memory which holds the executable program, may be reprogrammed at any
time. Atmel ships an In-System Programmer |SP together with evaluation kit
STK300. The hardware platform uses the same pinout on the programmers
interface as the evaluation kit, hence this | SP can be used to program the system.

Employing this feature restricts the usage of some pins. Pins which are shared
between Ports that are externally connected and used by the | SP cannot be used
at the same time. The Pins used for the serial RS 232 connection, RXD and
TXT, conflict with the ISP. Thus the UART and the ISP cannot be used simulta-
neously and either of them must be disconnected while the other oneisin use.
Having to disconnect the UART while programming the system prevents the
employment for communication with the bluetooth module.

The supplied programmer runs on 5V VCC. Fortunately, the programmer is
based on aAtmel MCU which also runson 3.3V. Thusthe STK’s programmer is
run only with 3.3V, even though the standard supply voltage is higher.

5. The platform’s UART may be connected to a standard serial port of a PC. The
pinout of the on board interface has been chosen, that a straight-through cable
can be used. A null-modem cableis not necessary. The on board RS232 trans-
ceiver provides the standard +- 15V needed for serial communication.

Dependant on the application running on the board, hardware flow-control
(RTS/ICTS) may need to be enabled. Asthe MCU’s Port E is partially used for
RXD and TXD, RTS and CTS are also connected to Port E.

6. The Bluetooth module is connected to standard I/O pins. Communication is
done over a UART implemented in software, since the hardware UART cannot

74

The EventCollector Concept

5.1 Design Considerations

10.

11.

12.

be connected permanently. The TXD connection from the Bluetooth module
needs to be wired to an edge triggered interrupt. Theinterrupt is used to start the
reception of an incoming byte in the MCU. Port E pin 4 has been chosen as edge
triggered interrupt with 4th highest Interrupt priority. Timing is very crucial for
the software UART. Never the less, future applications may need higher priori-
tized interrupts. The remaining connections of the software UART have been
wired to PORT A.

As Port B and Port D provide some useful features for future use, they areled
out to external connectors. These pins can either be used as general 1/0. Some
pins have extrafunctionality. Timer/Counter 1, which isnot used in our software
designed, can be clocked externally over pin 7 port D (PD7), or used as Pulse
Width Modulator Source on PB5 and PB6. PDO - PD3 can be used as external,
level triggered interrupts. The pinout used on the hardware platform is the same
as being used on the evaluation board. This facilitates future development, as
external add-ons may be connected either to the STK300 or the BTNode.

The remaining pins of port A are connected to small Light Emitting Diodes
(LED’s) to be used for optical feedback and / or debugging purpose. The resis-
tors R3 to R6 are needed to reduce current through the LED’s. The value of
these resistor can be increased up to 500 Ohms to reduce brightnessin favor of
power consumption.

The remaining pins of port E are wired to external connectors to be used as gen-
era purpose 1/0

The MCU features a10 Bit AD-Converter. The ADC is connected to an 8-chan-
nel Analog Multi-plexer which alows each pin of Port F to be used as an input
for the ADC. Port Fisled to an external connector intended for future use.

The ADC has a separate analog supply voltage and anal og reference pin. To
keep things simple, the both are connected to VCC. Thiswiring is sufficient for
genera use. For high-precision measurements, at least the reference must be
redesigned.

Bluetooth communicates at 2.4 GHz. At this speed, special care must be taken
into antenna design. To evade HF problems, an industrial 2.4GHz antenna was
used. Using this antenna required some special layouting, as described in [23].

The power supply of the MCU and Bluetooth module may be disconnected with
according Jumpers. These jumpers must be set for normal use, but may be
removed for debugging purposes. In addition, current consumption of may be
measured over these jumpers.

The EventCollector Concept 75

Technical Realization of the Embedded BTNode Hardware

5.2 First Steps with the chosen Microprocessor

To get to know the hardware infrastructure, a development kit was bought from
local the distributor. See “5.4 Contacts’ on page 82. This chapter covers the first
steps with this evaluation board. The STK300 [15] development board is available
for very decent pricing, costing about $100.

The swiss distributor of ATMEL products recommends |AR’s Embedded Work-
bench as C Compiler and ICE-300 as emulator. These products, only available for
the Microsoft Windows platform, are quite expensive, costing about $2000.- each.

Since development of software hereis preferably done on the Linux platform, we
decided to start with a demo version of the ImageCraft C Compiler [16] [17] on
Microsoft Windows and try to get GNU-cc running to continue development in
Linux. Using the commercia products on windows enabled us a trouble-free start
with the hardware. A small blinking-LED program was compiled on the PC and
downloaded to the board viathe in-circuit programmer attached to the PC's parallel
port. [18] Several resources on the web [19] pointed out that support for the
ATMEL AVR isworked on the GNU-cc projects. Several patches for gec, binutils
and stripped down glibc “floated” around several sites, mainly in Russiaand
Poland. [21]

It seems, that support for ATMEL’s AVR Processor isnow in the latest GCC CVS
snapshots and will be final in GCC 3.0 release. For the meantime, we have com-
piled CV S snapshots of gcc, binutils and glibc for AVR platform to be used for the
project [20]. Making the first steps with a demo-version of ImageCraft's C Com-
piler helped resolving some small problems with gec. (default register assignments
etc.)

The mandatory “Hello World” program was implemented quite fast. The STK300
board was connected to the hardware programmer and the PC’s serial port as
described in the STK’s manual[18].

5.3 Hardware Reference

This chapter covers the custom built hardware. Section 5.3.1 gives an overview of
jumpers and connectors which are available. The next section describes the steps
needed for setting up operation. In section 5.3.3 a hardware erratais given. Section

76

The EventCollector Concept

5.3 Hardware Reference

5.3.4 list electrical characteristics and section 5.3.5 lists some additional noteson
the hardware platform.

5.3.1 On board Connectors and Jumpers

Figure 16 on page 77 shows the main devices and connectors on the embedded
hardware. The usage of all Jumpers/ Connectorsis defined in Table 8, “ Definition
of Connectors,” on page 78.

Some principal parts are outlined on Figure 16 on page 77. T1 depicts the Blue-
tooth antenna. Ericsson’s Bluetooth module is represented as U2. U1 represents the

Micro Controller Unit. Connectors and Jumpers areillustrated as J1 to J10. Last,
the board’s four LED’s are outlined as D1 to D4.

l J1 J3
\ J2

U1 (Jp4
" V2 (Jps
J10) (D2

(o1
J8
%?\ o

J11

FIGURE 16. BTNode Platform

Table 8, “Definition of Connectors,” on page 78 lists all connectors and jumpers
and specifies their functionality.

Note: Some jumpers are only used fur current measurements such as J4 or JO.
These jJumpers are set during normal operation.

The EventCollector Concept 77

Technical Realization of the Embedded BTNode Hardware

Connector J6 and J7 connect to standard 1/0 pins on the embedded platform. Con-

TABLE 8. Definition of Connectors

Part Description

J Programmer Interface
Serid Interface

Port F

Port D

Port B

CPU Current Access
Interrupt 1

Interrupt 2

88898 ER

Bluetooth Current Access
Ji0 Power On / Off
J11 Power Connector
nector J3 iswired to the AD converter. These pins may also be used as simple input

pins. In addition to the port pins, each header has a connection for ground and vcc
to supply external circuits.

LED’sD1 - D4 are wired to the lower half of Port A. These outputs may be used for
visual signalization or debugging purposes.

Next to the normal ports which connect to the MCU’s standard 1/O pins, there are
several connectors for specia purposes. Connector J2 is used as seria interfaceto
the board. The pinout iswired in such away that no crossover cableis needed. Con-
nector J2 may be wired straight-through to the serial port of the PC. For proper
operation, hardware handshaking (RTS/ CTS) needs to be enabled on the PC
Table 9, “Pinout of Serial Interface J2,” on page 78 specifies the exact setting.

TABLE 9. Pinout of Serial Interface J2

Pin Function
1 not connected
2 TXD

78

The EventCollector Concept

5.3 Hardware Reference

TABLE 9. Pinout of Serial Interface J2

Pin Function
RXD
DSR
GND
DTR
CTS
RTS

0o N o o0 b~ W

Connector J1 iswired to contact the standard InCircuit Programmer which ships
with the STK300.[15] Due to the fact, that some wires are shared between program-
mer and serial port, both circuits may not be connected at the same time. Program-
ming the device will fail if the serial port is connected at the same time.

5.3.2 Setting Up Operation

To set up operation, several jumpers need to beinstalled. Jumper J4 and J9 are used
for current access of the Bluetooth kit and MCU. In normal operation, these Jump-
ersare set.

Power is connected to connector J11. The board must be supplied with 3.6V to
3.8V DC with ground connected to Pin 1 of jumper J11. To turn on power on the
board, set jumper J10. Now, the CPU starts running the previously stored program
which resides in non-volatile FLASH memory. If the MCU was not programmed,
new software must be downloaded as described below.

Polarity is crucia for al connector. Figure 17 on page 80 specifies the exact header
layout.

(o m] EEEEN
omEEN
2 46810
(13579

The EventCollector Concept 79

Technical Realization of the Embedded BTNode Hardware

FIGURE 17. Header L ayout of Connectors

Next, Software must be compiled as described in [20].

Now, the board can be programmed with the Parallel Port Programmer delivered
with the STK300 [15] development board. Programming is done using uisp[22], a
Linux programming software distributed under GPL.

In order to communicate with the embedded platform, a PC can be connected to the
board’s serial port, using the supplied cable. This cable connects every pin from the
PC’s DB-9 connector straight through to the embedded hardware as listed in

Table 10, “PC-BTNode Serial Adapter Cable,” on page 80.

TABLE 10. PC-BTNode Serial Adapter Cable

Pinin DB-9 Description Pin on
Not Used
RXD
TXD

Not Used
Ground
Not Used
RTS
CTS

Not Used

© 00 N O 0o b~ WDN PP
© 00 N O 0o B~ WDN PP

If everything is set up correctly, the board starts doing whatever it is to do.

5.3.3HardwareErrata

Unfortunately, the hardware design asit isimplement at this time, contains one
large compromise. The MCU supports a second configuration for the SRAM mem-
ory. Port A and port C may be used as Data/ Address bus to accessing the external
SRAM memory. If theinternal 4k Bytes of memory is not sufficient, up to 64k may
be addressed in external components. 4k Ram leaves very little space for future
applications. Having the possibility to add external memory to the platform via
daughter-board, would have opened enormous possibilities for future applications.

80

The EventCollector Concept

5.3 Hardware Reference

For no apparent reason, our partner who did the layouting did not want to wire
these two ports to external connectors.

A second problem is the Power_ON connection of the Bluetooth module.
Power ON is used to manually disable the bluetooth module to save energy. We
wished, that the layout makes this pin available, even though it is only connected to
VCC inthisfirst version. In the current layout, this pin is connected to VCC under
the bluetooth module, not available to external components.

The schematic and layout has one small error. Pull-Up resistor R10, which is used

to provide alogical 1 to the Reset pin of the MCU is connected to ground. This
resistor MUST be connected to VCC, otherwise the board will NOT run at al.

5.3.4 Electrical Characteristics

TABLE 11. Electrical Characteristics

Symbol Parameter Typ. Rating
Vce Input Voltage 3.4V -3.8V
lcc Power Supply Current @4MHz, 3.6V Vcc
Power Down, Bluetooth detached 3mA
Running, Bluetooth detached 8 mA
Running, 1 LED active, BT detached 12mA
Running, Bluetooth in PageScanEnable
mode 28 mA
Running, Bluetooth inquiring 56 mA
lccmax Max current 100 mA

5.3.5 Notes on Manufacturing

This chapter covers different notes of the manufacturing of the board. The PCB
itself isrouted with quite small distances between wires. Therefore, wo chose to
have the PCB manufactured professionally. The manufacturing costs about 25%.

Next difficult task is to equip the board with components. Ericsson’s Bluetooth

Moduleisbuilt on aBall Grid Array package. Soldering and placing of this compo-
nent manually isimpossible. Therefore, we had an external company place and sol-
der the top side of the board. Initial cost for thiswork is quite high, as a solder mask

The EventCollector Concept 81

Technical Realization of the Embedded BTNode Hardware

and program for the placement machine have to be made. Theinitial cost amounted
to about $250. For every board which was placed and soldered, ancther $15 were
due. Unfortunately, only 4 Bluetooth Modules were at hand. As the solder masks
are preserved for about ayear, manufacturing another seriesis much cheaper for the
next lot.

The sameinitial cost would have arisen for the bottom layer of the board. This sum
was quite large for doing only four boards. Therefore, we decided to solder the bot-
tom layer by hand.

5.4 Contacts

For manufacturing, several other parties were participating. Table 12, “ Third-Party
Contacts,” on page 82 lists all involved.

TABLE 12. Third-Party Contacts

Swiss Distributor of ATMEL ANATEC AG

products Sumpfstrasse 7
6300 ZUG, Switzerland
www.anatec.ch

Tel. 041/748 32 32

Distributor for Bluetooth Antenna Scantec Gmbh
Industriestr. 17
D-82110 Germering

www.scantec.de
Tel. +49 89/899 14 30

Distributor for SMD Crystall Eurodis Schweiz AG
Bahnstr. 58
8105 Regensdorf

www.eurodis.ch
Tel. 01/843 32 32

Distributor for other electroniccom- Farnell AG
ponents Brandschenkestr. 178
8027 Ziirich

www.farnell.com
Tel. 01/204 64 64

The EventCollector Concept

5.4 Contacts

TABLE 12. Third-Party Contacts

Distributor for battery and charger CONTREL AG
Boesch 35
6331 Huenenberg

www.contrel.ch
Tel. 041/781 17 17

PCB Manufacturer Walter Schoch AG
Dorfstr. 84
8912 Obfelden

Tel. 01/762 41 41

Placing of Components efab AG
Stetterstr. 25
5507 Méllingen

www.elfab.ch
Tel. 056/481 80 20

The EventCollector Concept

Technical Realization of the Embedded BTNode Hardware

The EventCollector Concept

CHAPTER 6

Experiments & Results

Chapter 6 covers experiments and results obtained in simulation. Section 6.1
describes a simulation performed with our architecture and discusses results
extracted thereof. Section 6.3 lists our experiences gained using the Bluetooth tech-
nology

6.1 Smulation of Event Propagation and
Evaluation of Data

This chapter describes a single smulation run in the BTSim simulation environ-
ment. A realistic scenario was designed and played through. Events are generated
and disseminated throughout the network. The obtained data is evaluated using the
vicinity application. Interpretation of the results rounds off this chapter.

6.1.1 Simulation Run

L et us assume a setup as depicted in Figure 18 on page 86. A hypothetical office
with three rooms is home to several people using Bluetooth equipped devices. At
thetop, Jim's officeisdrawn. Jim is using a Bluetooth equipped laptop and PDA. In
the center, we see Mary’s office. Mary has a Bluetooth enabled mobile phone. In

The EventCollector Concept 85

Experiments & Results

the room at the far right, Anne is working an a Desktop computer which has Blue-
tooth built-in. At the left side of the map, a Bluetooth enabled copier machineis
located.

Jim's Laptop (4)

jyu

=7W

Jim's PDA (3)

&7

Mary's Mobile (5)

7
‘e

Copier(1)

FIGURE 18. Example Scenario

The next paragraphs describe events generated in a real-world scenario of people
moving about in our hypothetical office. We will simulate the scenario alongside

The EventCollector Concept

6.1 Simulation of Event Propagation and Evaluation of Data

the description of anormal working day. To start the simulation, we run the BTSim
application by issuing java BTSim onthe command line.

First, two static nodes, the copier machine on the left and Anne's PC are placed by
clicking the mouse into the graphic area of BTSim. (Figure 19 on page 87)

[E[EventDi Simulator [=TEX]
File

o O

Click Mouse in Graphic Area

FIGURE 19. Example Scenario Step 1

Asthe two nodes haven't seen each other yet, no events have been generated so far.
A little later, Jim shows up at work, enters his office and turns on hislaptop. Thisis
simulated by clicking into the BTSim window and thus “ generating” Jim as node 3.
Then dragging him passed node 2, the copier machine. Jim's PDA picks up the
copier machine's Bluetooth signal and opens a connection to this machine. At this
point, thefirst eventsin the setup are generated. Copier machine and PDA will each
generate and store a found event. Then the two events are exchanged. For simplic-
ity, we assume that neither the PDA nor the copier machine has any previous events
stored in memory. Walking past the copier machine, into his office, the devices
leave radio distance and the connection is terminated. (Figure 20 on page 88)

The events stored in every node can be displayed by right-clicking into the center of
the desired node. Node 3 has the following events stored.

Node:3 him:1 foundTime:10.40.11.449 lost-
Time:10.40.13.559 countUp:0 TTL:5 finalFlag:true

Node:1 him:3 foundTime:10.40.11.439 lost-
Time:10.40.13.559 countUp:1 TTL:4 finalFlag:false

The EventCollector Concept 87

Experiments & Results

Thefirst event displayed originates from node 3 and indicates that node 1 has been
seen at 8:44:48 and lost again at 8:44:54. ThefinalFlag is set to true, since node 3
knows that the connection was disrupted.

The second event stored in node 3 originates from node 1 indicating that node 3 has
been seen. This event was then passed to node three over the bluetooth connection.
This can be seen by examining the countUp value which is 1 opposed to 0 in the
first event stored, the TTL is decreased by one.

[E[EventDi Simulator [=TEX]
File

©

o O

Click Mouse in Graphic Area

[Addr 3 FOUND 1
laddr 3 LOST 1

FIGURE 20. Example Scenario Step 2

In this second event record, the finalFlag is false, since the copier couldn’t notify
Jim’s PDA of the disrupted connection, because the connection, well, was dis-
ruppted. The lostTime indicates the time of the last update event sent from node 1
to node 3.

Some time later, Jim switches on his laptop. Laptop and PDA arein the same room
and thusin radio range. We simulate this by placing afourth node on the smulation
which overlaps node 3. The overlapping nodes 3 and 4 are displayed in blue color
indication a connection. (Figure 21 on page 89)

Right-click on node 4 displays four events stored in this node. First, the records
generated upon node 3 seeing node 4 (laptop <-> PDA) are listed. Further, events
generated by node 1 and 3 (Jim’'s PDA ‘meeting’ the copier machine) some time
ago have been transmitted into node 4. Thus, node 4 *learned’ something about the
past behavior of node 3 by receiving foreign events. Note the countUp value of two
which confirms, that these events have been passed along twice.

88

The EventCollector Concept

6.1 Simulation of Event Propagation and Evaluation of Data

[E[EventDi Simulator [=TETX]
File

&

FIGURE 21. Example Scenario Step 3

We now assume that Jim wants to know about the wireless network around him. He
starts up the Vicinity application on his laptop which servestopological datato
other applications as depicted in Figure 11, “ Service Layers of the EventCollector
Concept,” on page 44. The Vicinity connects to the local EventCollector, receives
the stored events and evaluates them. The program is started as follows:

java Vicinity -u http://localhost:10004 -p 3001

The* -u” parameter indicates, that Vicinity should connect to the EventCollector at
localhost:10004. On this TCP port, the EventCollector of node 4 is listening for
connection to exchange events. vicinity itself listenson TCP port 3001 (“-p”
parameter) for incoming connections to serve other applications like Connec-
tionGraph. Vicinity evaluates al events received from the connected node (in
this case node 4) and provides processed data on the specified port.

The application for visual representation of the processed data, Connection-
Graph, is started by issuing

java ConnectionGraph -u http://localhost:3001
on the command line. Again, the “ -u” parameter indicates the server port to con-

nect to. The ConnectionGraph displays a representation of the mobility value upon
starting. All nodes reported by the Vicinity are placed on acircle. Lines between

The EventCollector Concept 89

Experiments & Results

nodes represent a mobility value. Mobility indicates how often the two correspond-
ing node have seen each other. It basically is afrequency. The more encounters two
nodes have had, the higher the mobility value, the thicker the line between the two
nodes. In our example (Figure 22 on page 90), Jim's PDA has seen the two other
nodes exactly once, which yields thin lines between the nodes.

[Connection Graph: (Proxiity) B

File View

ﬂ \
\/]

FIGURE 22. Example Scenario Step 3 - Visualization of Proximity

Quantity of connections is one aspect, connection time another. In the Connection-
Graph application, the representation is switched using the view menu. The con-
nection weight (Figure 23 on page 90) presents a different view. Theline
connecting node 3 and 4 is much thicker than the line connecting node 1 and 3. The
physical connection between 1 and 3 was much shorter than the connection
between 3 and 4 which still lasts.

=] Connection Graph: (Connection Weigth) [=TETX]

File View

7 ;
\/]

FIGURE 23. Example Scenario Step 3 -Visualization of Connection Weight

The EventCollector Concept

6.1 Simulation of Event Propagation and Evaluation of Data

A further representation is the snapshot of the current topology asis known to node
4. Using the view menu in the ConnectionGraph application, the representation is
switched to the topology. (Figure 24 on page 91)

=] Connection Graph: (Topology) [SEX]
File View

7 \

\/]

FIGURE 24. Example Scenario Step 3 -Visualization of Topology

At this snapshot’s time, only hode PDA and laptop maintain a connection which is
indication by the line connecting node 3 and 4 in the graphic.

Note, even though node 2 (Anne's PC) exists since the beginning of the simulation,
none of the eval uations above showed any sign of life of this node. As mentioned in
chapter three, we are only operating on the point of view of one specified node. As
none of the nodes have ever entered radio distance of node 2, existence of Anne’s
PC is not known.

L et us continue with the simulation. During the morning, Jim leaves hisroom afew
times, each time interrupting the connection with his laptop. Once, he even leaves
the office completely, passing by the copier machine. We simulate Jim’'s behavior
by dragging node 3 (Jim’'s PDA) around the screen.

The Mohility representation in the ConnectionGraph application changes.

(Figure 25 on page 92) The connecting line between Jim’s laptop and PDA (node 3
and 4) isthicker than the line connecting node 3 and 1 since every reconnection
between laptop and PDA augmented the proximity value between these nodes.

The EventCollector Concept 91

Experiments & Results

=[Connection Graph: (Proxiity) [=ax]
File View

N—

FIGURE 25. Example Scenario Step 4 - Visualization of Proximity

When Jim passes by the copier machine for the second time, the copier machine
receives events generated by connections between Jim’'s PDA and laptop. At this
point, the copier machine receives information about this other node (Jim’s laptop)
and its interaction with Jim’'s PDA. However, the copier machine's view of the net-
work differs dightly from that of the PDA presented in Figure 25 on page 92
becauseit is based on partially different events.

We continue our simulation: Some time later, Mary and Anne walk into the office.
Mary accompanies Anne into her room, where Mary’s PDA picks up the signal
from Anne’s PC. Next, Mary walks by the copier machineinto her own room. Some
time later, she carries some records to Anne's room and returns again to her room,
passing by the copier machine both times. The final layout is depicted in Figure 26
on page 93.

92

The EventCollector Concept

6.1 Simulation of Event Propagation and Evaluation of Data

[E[EventDi Simulator [=TETX]
File

FIGURE 26. Example Scenario Step 5

Now, we would like to give a simple example on how to use the collected data. L et
us assume, that Anne started a large job on the copier machine. Having finished the
job, the copier machine would like to send Anne a message to inform her of the fin-
ished job. Asafirst possibility, the copier machine triesto send the message directly
to Anne’'s PC. A possible route to node 2 could go either over adirect connection or
over multiple hops, if there existed a path from node 1 to node 2. Consulting the
local topology snapshot (Figure 27 on page 93), the copier machine derives that in
it's perspective, there is ho current connection possibility to Anne's PC (node 2).

=] Connection Graph: (Topology) [SEX]
File View

=
_/

FIGURE 27. Example Scenario Step 5 - Visualization of Topology

The EventCollector Concept 93

Experiments & Results

As no connection exists, multi hop routing is needed. Consulting the mobility rep-
resentation (Figure 28 on page 94) gives a clue how to reach node 2.

[E[Connection Graph: (Proximity) [I=EX]
B

File View.

N

FIGURE 28. Example Scenario Step 5 - Visualization of Topology

TABLE 13. Event List of the Copier (Node 1)

Node him foundTime lostTime countUp TTL finalFlag
1 5 10.42.17.358 10.42.21.082 0 5 true
5 1 10.42.17.352 10.42.17.610 1 4 false
2 5 10.42.08.810 10.42.09.750 2 3 false
5 2 10.42.08.804 10.42.14.552 1 4 true
1 5 10.42.03.387 10.42.06.048 0 5 true
5 1 10.42.03.382 10.42.06.048 1 4 true
1 5 10.41.35.663 10.41.38.935 0 5 true
5 1 10.41.35.661 10.41.38.935 1 4 true
1 3 10.41.00.189 10.41.02.416 0 5 true
3 1 10.41.00.184 10.41.00.184 1 4 false
3 4 10.40.36.509 10.40.38.558 1 4 true
4 3 10.40.36.513 10.40.36.513 2 3 false
3 4 10.40.29.980 10.40.32.822 1 4 true
4 3 10.40.29.984 10.40.32.822 2 3 true
3 4 10.40.23.552 10.40.26.330 1 4 true
4 3 10.40.23.555 10.40.26.330 2 3 true
3 4 10.40.18.030 10.40.20.178 1 4 true
4 3 10.40.18.033 10.40.20.178 2 3 true
1 3 10.40.11.439 10.40.13.559 0 5 true
3 1 10.40.11.449 10.40.13.559 1 4 true

The EventCollector Concept

6.1 Simulation of Event Propagation and Evaluation of Data

From the mobility information, it can be derived, that node 5 (Mary’s PDA) had a
connection to Anne’'s PC some timein history. Thus, next time Mary passes the
copier machine, there is apossibility that she is heading to Anne and therefore be
used as a piggy-back carrier for the message. The message will probably not be
given to node 3 (Jim’'s PDA) since there has not been a connection to node 2 so far.
The behavior of Jim doesn’t make him a good messenger for messagesto Anne. If
the mobility evaluation yields two different paths, a preferred route could be chosen
on the basis of the frequency of possible connections. Nodes which connect fre-
quently to node 2, will connect again with much higher probability than a node
which has had only a single encounter.

To examine the given example in detail a complete list of the event known to the
copier isgiven in Table 13 on page 94.

6.1.2 Discussion of the Simulation

This short example already yielded a considerable number of events. If more nodes
areinvolved and if they are more mobile this number rises quickly. For small
embedded devices this means that the point where events must be discarded is
reached quickly. It therefore helpsif more powerful entities arein the areato store
large amounts of events, like Anne’'s PC, for example.

In the EventCollector concept one event describes the whole connection from the
start to the end. Whether the connection ends or continues, the existing event only
gets updated with the new lostTime or the finalFlag. This results in a considerable
compression. Updates only generate network traffic but do no new events and thus
do not require more storage space on the nodes. The number of events could be cut
in half by generating events upon rendezvous instead of a asymmetric discovery.
This however is not easily feasible with Bluetooth and also wouldn't allow to dis-
cover “dumb devices’.

By sending updates more frequently applications can be informed quicker of net-
work changes. For example to obtain a current topology short update intervals are
reguired while the generation of amap of a building requires hardly any updates at
al. Thereis a compromise between speed on one hand and bandwidth and power
on the other.

The EventCollector Concept 95

Experiments & Results

6.2 Using a Real World Setup

The intention was to play through a similar scenario as in the previous subchapter
with the BTNodes in real life. The purpose was to show that the result was compa-
rable to the simulation. Since the porting of the Bluetooth protocol stack could not
be finished in time, real world trials were not carried out. Preliminary testing with
available parts of the stack showed no obstacles for a successful deployment of the
EventCollector concept.

6.3 Experiences with the Bluetooth Technol ogy

Bluetooth is a very feature rich communication basis. It is very robust, features
error corrected communication channels, high throughput and even some sort of
real time communication service. As Bluetooth becomes more and more common,
it will be a cheap and powerful platform. Yet there are several problems for applica-
tions as seen in our work. This subchapter is not a Bluetooth overview, instead it
summarizes our experiences with the Bluetooth technology. Most aspects deal with
Bluetooth in general, but some also with the Ericsson ROK 101 007 modulesin
particular.

Bluetooth was designed to replace point-to-point communication using cables. The
architecture of Bluetooth isinherently client-server based. Also a Bluetooth net-
work is quite static, it reacts rather slow to network changes. These circumstances
resulted in some workarounds to implement the EventCollector on the embedded
platform, as described in chapter 4.

The architecture of Bluetooth isinherently client-server based. Thereisaclient that
makes an inquiry and a server that responds. This nature is also reflected by the
fact, that there is a master and some slaves. Nodes are not equal. This paradigm
makes sense for a computer with some peripheral devices or for a cellular phone
and its head set. However, it poses some problemsin atruly symmetric peer-to-peer
network.

When two nodes meet, one of them becomes the master, the other one slave. A third
node will be slave aswell. But there is no direct communication possible between
slaves. Two slaves can see each other through inquiries, but cannot contact each
other directly. To communicate, either of them may request a role change to
become master, or the two nodes may form a new piconet, again with one of them

96

The EventCollector Concept

6.3 Experiences with the Bluetooth Technology

as master and the other one as slave. But what about the third one, the old master? A
node can be a member of more than one piconet at the same time, but it can only
follow the frequency hopping sequence of one of them. It must switch back and
forth between the piconets and is only available for the members of the momen-
tarily active piconet. Thereis no true peer-to-peer or inter-piconet communication.

There are some problems finding other BT nodes within the surrounding. Fre-
quency hopping is an excellent way to cope with interference. It assumes however
that all communication partners hop synchronically, e.g. change to the same fre-
guencies at the same time. When a new communication partner appears, it must
synchronize itself with the others. Thisisanontrivial task, sinceit hasno ideaon
which frequency they are and what the next hop will be. The new node hasto try
different frequencies in a specific order until it finds some or all of its neighbours.
This process involves alot of transmissions and thus costs time, power and band-
width. The compromise chosen in the Bluetooth standard favors bandwidth and
power over time. This means, it may take arather long time to find other entitiesin
the vicinity. An inquiry takes roughly 1.3 seconds, but only after 4 to 5 inquiries
chances are high to have found all neighbours. Reference to fast connection estab-
lishment may be found in [34]. Thisvalue is arough estimation and in only fairly
right if the RF stage of the other nodes are not actively transmitting (data or
inquiry) at that time and are not in power down mode. The latter restriction is
caused by thefact, that at RF level communication actually is simplex. The module
can either send or receive, but not both. Duplex communication channels are emu-
lated in higher protocol layersin software. Also during inquiries the whole data
traffic isinterrupted. Again, thisis not aproblem in afairly static client - server sit-
uation where the whole piconet is synchronized through the master.

A desirable feature for applications such as ours would be akind of packet sniffer
to passively discover other nodes around. Thiswould be less power intense than the
active inquiry process. But again, frequency hopping complicates things here.
Another feature could be to report to the upper Bluetooth stack layers when the
module getsinquired.

The Ericsson ROK 101 007 modulesin particular have additional restrictions. They
are not multi point capable, only one connection can be open at once. As seen
above, a Bluetooth module cannot respond to inquiries while actively transmitting.
The ROK in particular cannot respond to inquiries at al, if there is a data connec-
tion, eveniif it isidle. Another problem is the high power consumption of these
modules. But newer modules use considerably less power than the ROK.

The EventCollector Concept 97

Experiments & Results

There are several workarounds for the above problems. We have seen, that we need
to beidlein order to be discovered by others and we have only one connection at a
time. We want to inquire as often as possible and exchange enough data with the
neighbours while still be idle often enough to be seen by the others. Therefore we
must find a compromise between being active through inquiry and data communi-
cation and being idle. Wetry to be idle for about 2/3 of the time by restricting the
inquiries and by closing a data connection immediately after the data has been
exchanged. For example: 5 seconds inquiry, 5 seconds data exchanging with neigh-
bours and 20 seconds idle. As seen here, such a period takes about 30 seconds,
which israther long.

The overall period must be randomly distributed. Otherwise it would be possible
that two nodes would never see each other. If they coincidentally would inquire at
the same time they were in phase and always would be.

Since we do not have a guarantee to see a neighbour within our reach at every
inquiry, we only declare a neighbour aslost if we haven't seen him for 3 consecu-
tive inquiry periods. So in the worst case it takes about 90 seconds to realize that a
certain node has left. If anode connectsto usthisisalife sign, much asan inquiry.
This helps reduce wrongly lost neighbours.

By applying the above algorithms, it is possible to avoid most of the problems
imposed by Bluetooth and the ROK. Piconetsin this scenario exists only very
shortly. They consist of two nodes while they are exchanging data. Then the piconet
istorn down immediately. The downside of this solution is the slow reaction to
changes in the vicinity. This reaction time could be reduced with some additional
workarounds. For example one could try to make less inquiries while accepting
longer times to find a node. To compensate for this one could ping the already
known Bluetooth addresses to find out if they are till there. Thisway aleaving
node is detected much faster, especially with fully Bluetooth compliant modules
that can reply to pings and inquiries while other connections are open.

Asfor now reaction times are rather long. One cannot just walk passed another BT
node and be sure to have made contact with it! Thisis not very nice, but it suffices
to demonstrate our infrastructure.

98

The EventCollector Concept

CHAPTER 7

Rdated Research

This chapter covers related research carried out for thisthesis. It is subdivided into
2 sections. Section 7.1 treats several papers focusing on the conceptual part of this
thesis whereas section 7.2 handles technical related parts such as Bluetooth tech-

nolgy.

7.1 Research Relating to Conceptual Aspects

One of the early implementations of event gathering to obtain location information
was the Active Badge Location System [24]. So called BAT'’s, small portable infra-
red beacons, were used to track people at an installation of the AT& T Laboratories
in Cambridge.

The Cricket Location Support System [25] is a current approach to the problems
encountered in the Active Badge L ocation System. Cricket is the result of several
design goals, including user privacy, decentralized administration, network hetero-
geneity, and low cost using HF responder beacons.

The EventCollector Concept 99

Related Research

[27] covers algorithms for position and data recovery in wireless sensor networks.
The mathematical aspects of network connectivity to reconstruct node positionsvia
linear or semi definite programming is explored.

In[28], afamily of adaptive protocols that efficiently disseminates information
among sensors in energy constrained wireless networks is presented. Several other
methods are compared to the suggested SPIN (Sensor Protocolsfor Information via
Negotiation) protocol.

In [26], a new paradigm for local communication between devices in Ubiquitous
Computing environments is proposed. Local communication in the RAUM system
is established using spatial criteria.

7.2 Research Relating to Technical Aspects

Smart Dust [29] is aresearch project of the University of California, Berkeley. It
covers autonomous sensing and communication in devices measuring less than one
cubic millimeter. Special attention has been paid towards miniaturization of sensor
and communi cation technol ogy.

In [30], a smart dust implementation using commercial-off-the-shelf components
was conducted as adiplomathesis. The author used similar hardware devices aswe
did for our platform. For communication, a self implemented protocol relying on
commercia HF transceiversis used.

[31] illustrates the Vision, Goals and Architecture of the Bluetooth standard. Sev-
eral other competing standards such as |[EEE 802.11, HomeRF and IrDA are
touched and compared to Bluetooth.

A report on Bluetooth Basics for Internet Appliance Design [32] gives an easy to
understand introduction into different aspects of the Bluetooth standard.

One of the chairmen of the Bluetooth air protocol group has written a very detailed
report on the Bluetooth Radio System [33]. Topics such as modulation, medium
access, connection establishment and error connection are covered in great techni-
cal details.

In [34], delay bottlenecks in connection establishment are pinpointed and a tech-
nique for fast establishment of ad-hoc connectivity is introduced.

100

The EventCollector Concept

CHAPTER 8

Summary & Outlook

This thesis proposes a distributed infrastructure for ad-hoc networks which allows
participating nodes to improve situation awareness. Nodes with vastly different
capabilities cooperate in collecting information about the environment. Thisinfra-
structure is event based. Its abilities was shown through simulation. The live dem-
onstration with our Bluetooth nodes has yet to be completed.

The resulting EventCollector concept has proven to be arobust and flexible plat-
form to explore an ad-hoc network on arather abstract level. It is based on events
that are created and distributed by the nodes themselves. Such events are generated
upon two nodes meeting or loosing sight of each other. In addition a node affirms
an ongoing neighbourship by sending update events on aregular basis. This keeps
the system current and makes it |ess susceptible to transmission errors. These
found, lost and update events are flooded throughout the network. Each node may
collect as many events asiit likes and thus serves as areservoir for other, newly
appearing nodes. Through analysis of its event collection every node may extract
the relevant properties of the network and build its own perception of the environ-
ment. Thisinfrastructure is extensible to distribute other information than just
“have seen” and “havelost”.

The three exemplary measures for neighbourhood have been shown to provide use-
ful information to higher level applications:

The EventCollector Concept 101

Summary & Outlook

e Thetopology for example could be used for routing asit showswho is currently
connected to whom.

e |f nodirect connection path exists, the mobility value helps to find a piggy back
node for multi hop routing. It takes past behavior into account in the form “node
A frequently has contact with node B”.

e The connection weight measures the average connect time of alink. It therefore
isarough measure of physical proximity within the chosen time interval.

To set up alive demonstrator a small mobile node with a Bluetooth module was
built. Besides communication it features peripheral capabilities, e.g. for sensors.
The Bluetooth technology proved to be a very robust and comfortable platform for
our purpose, allowing usto concentrate on the main issues. However, there are
some drawbacks like high power consumption and long reaction times to network
changes. While power consumption certainly will decrease in the near future, the
delays are determined by the simplex HF stage and the frequency hopping used.

For future work the vicinity data may be enriched with additional information:

e Link statuswith bit error rate, throughput or latency may help to find better
routing routes.

e By distributing distance estimations between nodes, the physical arrangement
may be deduced more accurately.

e Nodes, which provide descriptive data about themselves, help improve the inter-
pretation of the extracted information. For example if some nodes might be
found static one could start to map the topological information to a chart and
thus provide navigation and tracking services.

With additional sensor data like temperature, noise, light or motion even more can
be learned about the vicinity. As aresult, a node's perception can be refined.

102

The EventCollector Concept

Ircuit Diagram

C

Appendix A

103

The EventCollector Concept

T z | c v S a B o
T NOA T 3138 HOTHNZ HLI-MIL © AMOLEHOEYT
3ivd
T 300N 18| O
131N38 N9 A9 NOIS3O
§ SIMMANSINTINKO T 32 : Liacous
HOIN3MZ o
lﬁ FMHISHIOH IHOSINHOIL
IHDSISS3IONIDAII
| TELTL SonmNOIIZ
SS3POB LNIHEND NdD H
=0
= 9 O~ ngiujm
2 vE so] 2 90TONY ||
bl ' 20N N
S 58 &8
Z SLCNSE3LINT O L1od =8 S
z z
D SR
m I n (Tifo|a 4 1H0d
E [= [@als 20N IO ONA
- a 59 S8 IEE] = o —————
o g teaayaniyy] O - TRensaasapi]
7 3 . THE | e ;
D wirf—
X 220 290 Tn S
I aO AW_IA -
— nO i 201
o § 3= LS~ ad3liea X
= H c e
e e preyw) B
B o o2
tnsume £ D =S —
S vomn €] e E
o o = Piu) P X
uz = i anps
o 5440/NO - Py B
= v
- o] s
E 2]
T
£ o
T - 5
200
%z ~ v |- SLangy3LINT
JREiEE er sr
=0
S
- < Hw
= o
Y 553900 R 2l 10T ZES
29N o INIHMD 1E = S BN =0
T S~
Taoon]
= ao o 7 NI 5 z a
=08 S
Zhsze—smEDL | H z HN =
v s3583%5 5 B ©-gE;
EEE LI A O = T =
: s T 5:]
T > SR
o [e oy W R
——— Howe [15 ! r ||
o =l 3
I %
oy 1o =3 oL 2
N oy
ey s . z2r
v e —— i i+
o = =
o - St
o = ot
2n 3
T c € v =] =] 2 e

The EventCollector Concept

104

Appendix B Bl” Of Matalal

The EventCollector Concept 105

Bill of Material

TABLE 13. Bill of Material

Part
No.

C1,C2,
C3, C4,
C6, C8,
C9,
C14,
C15

C5
Cc7

C10,
C12,
C13

C11
R1

R2

R3, R4,
R5, R6

R7
R8
D1, D2,

D3, D4
X1
X2

ICUl

ICU2

ICU3

Device Type
SMD CAP-100N,SAVX0603

SMD CAP-27P,SAV X0603
SMD CAP-33P,SAV X0603

SMD AP_POL-
4.7U,STANTAL_BSIZE

SMD CAP-470N,SAV X0603
SMD RES-10K,SAV X0603

SMD RES-0,SAVX0603
SMD RES-150,SAVX0603

SMD RES-100K,SAV X 0603
SMD RES-330K,SAV X 0603

DIO_LED-
LT670_ROT,SLED_LST670 A

QUARZ_04-SCM-309S-3.6864

MHZ

QUARZ_04-MC306-
32KHZ,SMC306

ATMEGA103L_STQFPG4A-
STQFPG4A,SA 4MHz

BT_ROK101007_SROK101007-

SROK10A

SMD NATIONAL_LP2987_SS08-

SS08

Description
100nF Capacitor

27pF Capacitor
33pF Capacitor
4.7uF Capacitor

470nF Capacitor
10kQ2 Resistor

0Q Resistor
150Q Resistor

100kQ Resistor
330KQ Resistor
Red Light Emit-
ting Diode
3.6864MHz
Oscillator

32.768kHz Oscil-
lator

ATMEL
ATMEGA 103L

Ericsson Blue-
tooth Kit
BT_ROK101007

Distributor
Farnell

Farnell
Farnell
Farnell

Farnell
Farnell

Farnell
Farnell

Farnell
Farnell
Farnell

Eurodis

Eurodis

Anatec

Ericsson

Farnell

106

The EventCollector Concept

TABLE 13. Bill of Material

Part

No. Device Type Description Distributor

ICU4 MAXIM_MAX3232_SSOIC16- RS232 Driver Farnell
SSOIC16

T1 RANGESTAR100902_SRS100902- Antenna Scantec
SRS1A

J1, 33, CON-010_10-PIN-T_JUM2X5 2*5 Jumper Farnell

J6, J7

J2 CON-008_8-PIN-T_JUM2X4 2*4 Jumper Farnell

A, X, JUM-002_2-PIN-T_JUM1X2 1*2 Jumper Farnell

J8, J9,

Ji0, J11

B1 NICD Tel Pack 3.6V, 600mAh/ NiCd Accu Contrel
VEG620*3

The EventCollector Concept 107

Bill of Material

108 The EventCollector Concept

Appendix C

Application Notes

This chapter covers additional applications which are possible using the hardware
platform built for this thesis.

11.1 Uart2Suart

The Uart2Suart application implements a pass-through mode. Data received on the
hardware UART is transparently passed on through to the software UART and vice
versa. Upon power up, the Bluetooth module isinitialized, PAGE_SCAN_MODE
enabled such that the module can be inquired and the baudrate is set according to
the software UART’s capabilities. Thereafter, the hardware platform can be used
just like Ericssons' Bluetooth Tool Kit.

LED 0 flashes every second for 250msecs (as specified in AVR_Time.c)

LED 1 is set whenever the CPU isworking and unset upon entering sleep mode.
Thistime spread where the CPU is actually processing istoo short to be recognized
by human eyes. Therefore, the CPU seems always asleep.

LED 2 is set upon errors on the software UART (as specified in AVR_SUart.c)
Theinitialization of the bluetooth module requires sometime. LED 3 signals that
initialization is complete and that pass-through mode is enabled.

The EventCollector Concept 109

Application Notes

The hardware platform can be connected via straight-through serial cableto the
PC's serial port set to 57.6kBaud. Hardware handshaking (not Xon/Xoff!) must be
enabled on the PC’s serial port!

11.2 AVRnd

AVRnd is an application to test the Random Sequence Generator implemented
using the analog to digital converter. A sequence of 10 numbers are printed out on
the seria port.

LED O flashes every second for 250msecs (as specified in AVR_Time.c).
The hardware platform can be connected via straight-through serial cable to the

PC’s serial port set to 57.6kBaud. Hardware handshaking (not Xon/Xoff!) must be
enabled on the PC's serial port!

11.3 ADCTest

ADCTest is an application which reads sensor data connected to the analog to digi-
tal converter input.

Every 2 seconds, sampled values of port O and port 1 of the ADC are printed out
over the serial interface.

LED 0 flashes every second for 250msecs (as specified in AVR_Time.c)

Figure 29 on page 111 shows the schematic of the circuit used to extend the board
with alight and temperature sensor. The devices, a photoresistor and NTC resistor,
are standard components with no special characteristics. Our devices have a mean
resistance of about 10kOhms. Together with anormal 10kOhm resistor, a voltage
divider isformed. The resulting voltage is measured with the analog to digital con-
verter.

The hardware platform can be connected via straight-through serial cableto the
PC's serial port set to 57.6kBaud. Hardware handshaking (not Xon/Xoff!) must be
enabled on the PC’s serial port!

110

The EventCollector Concept

11.4 Using a Software UART on the STK Board

VCC
10k 10k
- -
ADC ADC
Port 0 Port 1
- ->
« <«
GND

FIGURE 29. Schematic for the ADC Extension

11.4 Using a Software UART on the STK Board

Port A9 (VCC)

Port E4 (RXD)
Port A7 (TXD)

Yvy

RS Pin7 -— 13
RS Pin3 w-——2 14
3 15
4 16
5 2 17
6 = 18
RS Pin2 «——— 7 N 19——— Port A5 (CTS)
RS Pin4 = 8 @ 20— Port A6 (RTS)
9 21
L 1o 2
LT]u 3L L
T ul T 100nF
100nF
» Port A8 (GND)
RS Pin8 =

FIGURE 30. External Wiring for Software UART on STK

The EventCollector Concept 111

Application Notes

Figure 30 on page 111 show the external wiring needed to connect a second serial
deviceto the STK 300. Ports used on the STK side are defined in AVR_SUart.c.

Note: A null-modem cable is needed to connect the extension board to the serid
port of a PC!

112 The EventCollector Concept

Appendix D

Bibliography

(1]
(2]
(3]
(4]
(5]
(6]

(7]

(8]

(9]

Bluetooth Special Interest Group, Bluetooth, http://www.bluetooth.com/, Feb-
ruary 2001

HomeRF Working Group, HomeRF, http://www.homerf.org/, February 2001
Jack PF. Glas, Spread Spectrum, http://cas.et.tudelft.nl/~glas/thesis/
Infrared Data Association, IrDA, http://www.irda.org/, February 2001

|EEE, The 802.11b standard, http://www.ieee.org/, February 2001

Axis Communications corporation, The Bluetooth on Linux Homepage, http://
devel opper.axis.com/software/bluetooth/, February 2001

Peter Danegger, Full duplex software UART, http://www.specs.de/users/danni/
avr/soft/uart/index.htmhttp://www.specs.de/users/danni/avr/soft/uart/
index.htm, February 2001

Winfield Stanton and Thomas Spencer, Primer on Asynchronous Modem Com-
munication, http://www.microsoft.com/technet/hw/async232.asp, February
2001

Linux HOWTO, Text-Terminal-HOWTO, http://stone.trew.it/doc/howto/html/
Text-Terminal-HOWTO-10.html, February 2001

[10] Olliver Kasten, Smartlts Project, http://www.inf.ethz.ch/~kasten/research/

smart-its/, February 2001

[11] Triscend Corp., Triscend E5 family, http://www.triscend.com/products/

dsebcsoc.pdf, February 2001

The EventCollector Concept 113

Bibliography

[12] Mitsubishi Corp., MC16 family, http://www.mitsubishichips.com/data/
datasheetsymcus/mcupdf/um/62eum.pdf, February 2001

[23] Microchip Inc., PIC 17c75x family, http://www.microchip.com/download/lit/
pline/picmicro/families/17c75x/datasheet/30264a.pdf, February 2001

[14] ATMEL, ATMega 8Bit AVR Series, http://www.atmel.com/atmel/acrobat/
doc0945.pdf, February 2001

[15] ATMEL, STK300 Development Board, http://www.atmel.com/atmel/acrobat/
doc1161.pdf, February 2001

[16] ImageCraft, Development tools for AVR, http://www.imagecraft.com/software/
adevtools.html, February 2001

[17] ATMEL, First Steps with ImageCraft C Compiler, http://www.atmel.com/
atmel/acrobat/doc1630.pdf, February 2001

[18] ATMEL, STK300 Starter Kit User Guide, http://www.eu.atmel.com/atmel/
acrobat/doc1149.pdf, February 2001

[19] AVR Forum, The AV R Forum, http://www.avr-forum.com/, February 2001

[20] Lukas Karrer, Notes on AVR Platform and GNU Tools, http://ww.lka.ch/
projects/avr/, February 2001

[21] Denis Chertykov, GNU tools for the ATMEL AVR micro controllers, http://
home.overta.ru/users/denisc/, February 2001

[22] Incircuit Serial Programmer, http://www1.itnet.pl/amel ektr/avr/uisp/, February
2001

[23] RangeStar, Overview over Ultima Series Antennas, http://www.rangestar.com/
pdf/ultima_technical_overview.pdf, February 2001

[24] A. Hopper, V. Falcao, J Gibbons, The Active Badge L ocation System. ACM
Transactions on Information Systems 10, 1 (January 1992)

[25] N. Priyantha, A Chakraborty, H. Balakrishnan, The Cricket L ocation-Support
System, Proc. of the Sixth Annual ACM International Conference on Mobile
Computing and Networking (MOBICOM), August 2000.

[26] M. Beigl: Spatially aware local communication in the RAUM system. Proceed-
ings of the IDM S, Enschede, Niederlande, October 17-20, 2000,

[27] Lance Doherty, Algorithms for Position and Data Recovery in Wireless Sensor
Networks, http://basi cs.eecs.berkel ey.edu/sensorwebs/publications/
lance_thesis.pdf, February 2001

[28] Joanna Kulik, Wendi Rabiner, Hari Balakrishnan, Adaptive Protocols for Infor-
mation Dissemination in Wireless Sensor Networks, Proc. 5th ACM/IEEE
Mobicom Conference

114

The EventCollector Concept

[29] University of California, Berkeley, Autonomous sensing and communication in
a cubic millimeter, http://www-networking.eecs.berkel ey.edu/~pister/Smart-
Dust/, February 2001

[30] Seth Edward-Austin Hollar, Smart dust implementation using commercial-off-
the-shelf components, http://www-bsac. EECS.Berkel ey.EDU/~shollar/
shollar_thesis.pdf, February 2001

[31] J. Haartsen, M. Naghshineh, J. Inouye, O. Joeressen, W. Allen, Bluetooth:
Vision, Goals and Architecture, ACM M obile Computing and Communications
Review, Volume 2, Number 4, October 1998

[32] Rebecca Spaker, Bluetooth Basics, http://www.embedded.com/internet/0007/
0007ial.htm

[33] Jaap Haartsen, The Bluetooth Radio System, |EEE Personal Communications,
February 2000

[34] T. Salonidis, P. Bhagwat, L Tassiulas, Proximity Awareness and Fast Connec-
tion establishment in Bluetooth, Mobile and Ad Hoc Networking and Comput-
ing, 2000. MobiHOC.2000.

The EventCollector Concept 115

Bibliography

116 The EventCollector Concept

	The EventCollector Concept
	CHAPTER 1 Introduction
	CHAPTER 2 Technical Background
	2.1 Mobile Ad-Hoc Networks
	2.2 Wireless Communication Technologies
	2.2.1 Bluetooth
	FIGURE 1.� Bluetooth Protocol Stack

	2.2.1 HOME RF
	2.2.2 IrDA
	2.2.3 Wireless LAN IEEE 802.11b
	2.2.4 Proprietary RF Communication

	2.3 Embedded Technology
	TABLE 1. Energy consumption of different devices
	FIGURE 2.� Die of AT90LS2XXX Series MCU

	CHAPTER 3 Concepts, Solutions & Design Considerations
	3.1 How to Describe a Mobile Network
	3.1.1 Graph
	TABLE 2. Sample Network Matrix
	TABLE 3. Sample Relation Record
	FIGURE 3.� Sample Network Graph

	3.1.2 Snapshot Yields Topology
	3.1.3 Statistical Description
	3.1.4 Further Information
	3.1.5 No Common Perception

	3.2 Possible Approaches
	3.2.1 Zero Knowledge Exploration
	3.2.2 Propagation of Information Through the Vicinity
	3.2.3 Event Structure
	FIGURE 4.� Possible Failures
	TABLE 4. Example Using Events I
	FIGURE 5.� Time Line I
	TABLE 5. Example Using Events II
	FIGURE 6.� Time Line II
	TABLE 6. Example Using Events II
	FIGURE 7.� Time Line III

	3.2.4 Storage of Collected Information

	3.3 Architecture of the EventCollector Infrastructure
	3.3.1 The concept of the EventCollector
	FIGURE 8.� General Architecture Overview

	3.3.2 Tasks of an EventCollector
	3.3.3 Event Exchange Protocol
	FIGURE 9.� Flow and Event Packet

	3.3.4 Flow Control
	FIGURE 10.� Protocol Overview

	3.3.5 Flooding Algorithm
	3.3.6 Error Correction
	3.3.7 Shortfalls of the Protocol
	3.3.8 Extensions to the Protocol

	3.4 Information Extraction
	3.4.1 Topology
	3.4.2 Connection
	3.4.3 Mobility

	CHAPTER 4 Architecture and Realization
	4.1 General Architecture Overview
	FIGURE 11.� Service Layers of the EventCollector Concept
	FIGURE 12.� General Architecture Overview

	4.2 Java Software
	4.2.1 Basic Classes for Framework
	BT_FlowPacket
	EventConnectionServerThread
	4.2.2 Classes for Evaluation of Data
	4.2.3 Classes for Graphical Representation of Data
	4.2.4 Classes used in Simulation
	4.2.5 Gateway

	4.3 Embedded Software
	4.3.1 General Notes on Embedded Programming
	4.3.2 Drivers
	FIGURE 13.� Overview of RS232 Signalling
	FIGURE 14.� Bit Signalling of RS232 Communication

	4.3.4 Scheduler
	4.3.5 EventCollector on the Embedded Device
	FIGURE 15.� EventCollector State Diagram

	CHAPTER 5 Technical Realization of the Embedded BTNode Hardware
	5.1 Design Considerations
	5.1.1 General Issues
	5.1.2 Selection of the Microprocessor Platform
	TABLE 7.

	5.1.3 Hardware Design Considerations for the BTNode Platform

	5.2 First Steps with the chosen Microprocessor
	5.3 Hardware Reference
	5.3.1 On board Connectors and Jumpers
	FIGURE 16.� BTNode Platform
	TABLE 8. Definition of Connectors
	TABLE 9. Pinout of Serial Interface J2

	5.3.2 Setting Up Operation
	FIGURE 17.� Header Layout of Connectors
	TABLE 10. PC-BTNode Serial Adapter Cable

	5.3.3 Hardware Errata
	5.3.4 Electrical Characteristics
	TABLE 11. Electrical Characteristics

	5.3.5 Notes on Manufacturing

	5.4 Contacts
	TABLE 12. Third-Party Contacts

	CHAPTER 6 Experiments & Results
	6.1 Simulation of Event Propagation and Evaluation of Data
	6.1.1 Simulation Run
	FIGURE 18.� Example Scenario
	FIGURE 19.� Example Scenario Step 1
	FIGURE 20.� Example Scenario Step 2
	FIGURE 21.� Example Scenario Step 3
	FIGURE 22.� Example Scenario Step 3 - Visualization of Proximity
	FIGURE 23.� Example Scenario Step 3 -Visualization of Connection Weight
	FIGURE 24.� Example Scenario Step 3 -Visualization of Topology
	FIGURE 25.� Example Scenario Step 4 - Visualization of Proximity
	FIGURE 26.� Example Scenario Step 5
	FIGURE 27.� Example Scenario Step 5 - Visualization of Topology
	FIGURE 28.� Example Scenario Step 5 - Visualization of Topology
	TABLE 13. Event List of the Copier (Node 1)

	6.1.2 Discussion of the Simulation

	6.2 Using a Real World Setup
	6.3 Experiences with the Bluetooth Technology

	CHAPTER 7 Related Research
	7.1 Research Relating to Conceptual Aspects
	7.2 Research Relating to Technical Aspects

	CHAPTER 8 Summary & Outlook
	Appendix A Circuit Diagram
	Appendix B Bill of Material
	TABLE 13. Bill of Material

	Appendix C Application Notes
	11.1 Uart2Suart
	11.2 AVRnd
	11.3 ADCTest
	FIGURE 29.� Schematic for the ADC Extension

	11.4 Using a Software UART on the STK Board
	FIGURE 30.� External Wiring for Software UART on STK

	Appendix D Bibliography

