IIS ASICs for Wireless MIMO Communication - Part 2

Baseband Processor I for 2×2 MIMO-OFDM

Description

 Baseband processor for 2 × 2 MIMO-OFDM: frame sync and FFT processing

Technical Data

Process: UMC 0.18 μm
1P/6M CMOS technology

 Clock: 250 MHz
Area: 3.95 mm²
Delivers up to 2 M 64-point FFT/s

High-Throughput Steering Matrix Computation

Description

 First steering matrix (SM) computation unit for 4×4 MIMO beamforming

Technical Data

 Process: UMC 0.18 μm 1P/6M CMOS technology

Clock: 149 MHz
Area: 0.41 mm²

Delivers up to 0.3 M SM/s

Pipelined Hard-Output Sphere Decoder

Description

 Pipelined sphere decoder with early termination for 4-stream MIMO detection

Technical Data

 Process: UMC 0.13 μm 1P/8M CMOS technology

• Clock: 333 MHz

• Area: 90 k gate equivalents

Achieves up to 761 Mbit/s

4-, 8-, 16-, and 32-State BCJR Decoder

Description

4-, 8-, 16-, and 32-state
BCJR decoder for iterative
MIMO detection

Technical Data

 Process: UMC 0.18 μm 1P/6M CMOS technology

Clock: 375 MHz
Area: 2.90 mm²

• Throughput: 375 Mbit/s

Baseband Processor II for 2×2 MIMO-OFDM

Description

 Computes linear MMSE estimator matrix and performs MIMO detection

Technical Data

Process: UMC 0.18 μm
1P/6M CMOS technology

Clock: 185 MHz
Area: 3.7 mm²

 Delivers up to 4.2 M MMSE matrices per second

Gram-Schmidt-Based MMSE-SQRD

Description

Gram-Schmidt-based MMSE sorted QR decomposition

Technical Data

• Process: UMC 0.18 μm 1P/6M CMOS technology

Clock: 162 MHz
Area: 0.99 mm²

Delivers 1.56 M SQRD/s

Lattice Reduction ASIC for MIMO Detection

Description

 First ASIC implementation of the LLL algorithm for MIMO detection

Technical Data

 Process: UMC 0.13 μm 1P/8M CMOS technology

Clock: 303 MHz
Area: 1.58 mm²
Processes up to 5.4 M matrices per second

High-Throughput BCJR Decoder

Description

 8-state radix-4 BCJR decoder for high-throughput turbo decoding

Technical Data

Process: UMC 0.18 μm
1P/6M CMOS technology

Clock: 350 MHz
Area: 0.76 mm²

• Throughput: 700 Mbit/s

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Institut für Integrierte Systeme Integrated Systems Laboratory

created with LATEX beamer class