Peter Luthi, Ulrich Hensel
AMD Dresden Design Center, Germany

Verification Glue:
How to compose system-level
environments

March 03, 2003 3rd European Specman User Group Conference

Presentation Outline AMD:'
e e ——

e Motivation

e Basic Ingredients

Example: Checker composition

Example: USB block-level setup

Example: PCI system-level setup

Example: Superposition of PCI and USB

e Summary

March 03, 2003 Verification Glue: How to compose system level environments 2

Motivation AMD:'
e o —

Verification Dilemma
— Southbridge consists of various peripheral interfaces and bridges

— Block-level verification
e High controllability and observability
e Fast simulations and debugging

- System-level verification
e Ensures correct integration

e Complex system-level tests
designed to ensure interoperability
between different blocks

— Maximum reuse of verification
components necessary to
cope with widening design gap

March 03, 2003 Verification Glue: How to compose system level environments ‘ 3

Motivation cont. AMD1

r-r-r-r——~——"F~—~~~~"~~>~~""~>"~""~>~"~""~>"~>~>"~7~77 7777 I
I I - .
i HyperTransport™ g SL verification
|
4 i)
|
: HyperTransport™ :
| |
: :
Peripheral < - |~ > Peripheral
on SL | | on SL
| |
PCI | PCI SB 2 | USB 2.0
peripheral 3 | ¢ u -0 | - peripheral
| |
L) J
: * !
i PCI bus USB bUS‘?\ | BL verification
|

SL: system-level

BL: block-level _ ~IF verification
IF: interface

March 03, 2003 Verification Glue: How to compose system level environments 4

Motivation cont. AMD1

PCI . Peripheral on SL
SL simulations
USB 2.0 l » Peripheral on SL

IF BL simulations SL integration

Verification challenges
— Leverage of block level components to system level

— Seamless integration to overall chip environment
including concurrent traffic to multiple devices

— Check system level access to shared resources
(host memory, IRQs)

Reuse

— BL generation, bus functional models (BFM),
reference models

— Transaction and protocol checkers, coverage

SL: system-level
BL: block-level
IF: interface

March 03, 2003 Verification Glue: How to compose system level environments ‘ 5

Basic Ingredients: AMD1

Transactions

— Common prototype trans_s, implemented to support split
transactions (as superset of split and non-split transactions)

— Split transactions simplify transaction-based checking

Detailed, protocol-specific, T Abstract, interface independent,
low-level rans_s data consistency

HT_pkt_trans_s | : Host_trans_s
Packet-based §

PCI_cmd_trans_s | HT host trans_s |
Phase-based |

USB2 trans_s | PCI_host trans_s |
Transfer-based

March 03, 2003 ‘ Verification Glue: How to compose system level environments ‘ 6

Basic Ingredients: AMD1

Transactions cont.

Code snippets

Trans_s Host_trans_s
dir_ m : dir_t; /I either tx = transmit or rx = receive // public methods
kind_m : kind_t; // either req = request or resp = response get_typ() : cycle_tis {}; // transaction type: mem, io, conf

get_cmd() : cmd_t is {}; // transaction command: read, write

consume(trans_p : trans_s, handler_p : handler_u) is undefined; get_addr() : dword is {}; // 32 bit address
get_hi_addr() : dword is {}; // upper 32 bit (64 bit addressing)
is_consumed() : trans_s is undefined; // returns NULL if get_be() : list of nibble is {}; // high active byte enables

/I unconsumed get_term() : term_t is {}; // termination - only for responses

display() : string is { . li i [1-
result = append(get_kind(), " ", get_dir(), " trans_s"); get_data() : list of dword is {}; // data

b

get_consumer() : handler_u is {}; // consumer

March 03, 2003 Verification Glue: How to compose system level environments 7

Basic Ingredients: AMD1

Transaction Dispatcher

Bus Watcher // Public method

register_handler(handler_p : handler_u, prio_p : uint) is {

b

Trans_s

4 // Registration

Transaction Dispatcher

post_generate() is also {

y ht_check_td.register_handler(me, 5); // register me @ HT
[rans_s s
/

Prio n Handler X I -
Handler Y I Key features of transaction dispatcher:
— Prioritized handler attachment possible
Handler Z (subtractive decoding)

Catch-all Handler — Consumption (is_consumed())

— Visibility and granularity: Each handler
sees all transactions

Prio O

March 03, 2003 Verification Glue: How to compose system level environments ‘ 8

Basic Ingredients: AMD1

Transaction Dispatcher cont.

unit check_trans_disp_u like trans_disp_u { unit resp_trans_disp_u like trans_disp_u {
exec_check() @ trigger_e is only { exec_resp() @ trigger_e is only {
check_handler.run_check(trans_m); resp_trans_m = respond_handler.respond(req_trans_m, resp_trans_m);
b b
unit my_check_handler_u like check_handler_u { unit my_respond_handler_u like respond_handler_u {
run_check(trans_p : trans_s) @ trigger_e is respond(req_trans_p : trans_s, resp_trans_p : trans_s) : trans_s @ trigger_e
only { is only {
b result = resp_trans_p; // by default, pass incoming response further
[IS
.

| Check Transaction Dispatcher | | Response Transaction Dispatcher |

Check Handler X | Reseonse Handler X |
Check Handler Y | ResEonse Handler Y |

Access Error Handler | Default Response Handler |
Transaction is consumed Request is consumed,

and checked Response is generated

March 03, 2003 ‘ Verification Glue: How to compose system level environments ‘ 9

Example: AMD:'

Composition of different checkers

Checker using host_trans_s:
- No interface-specific checks
- Reuse possible in both block- and system-
Host_trans._s Checker I level (e.g. USB2HT checker)
Checker using IF-specific trans:

Host_trans_s Checker

Check Transaction Dispatcher

- Interface-proprietary, allows more profound
checks

- Checker using single point attachment can
be reused in both block- and system-level
(e.g. HT2HT checker)

- Checker using dual point attachment

Access Error Handler cannot be reused (e.g. HT2PCI checker)
Access error handler:

— Complains as soon as an unconsumed
transaction arrives

[] host trans_s based

B IF-specific trans

March 03, 2003 ‘ Verification Glue: How to compose system level environments 10

Example:
USB block-level setup AMDD

host side int USB
> BFM

Resp TD Check TD Bus Watcher
Update Ref. Model
- (e.g. register set
Resp Handler Update Unit image)
Responses

| Host2USB Checker

Score r
host trans._s based Access Error Handler oreboard

Update Reference Model: > Data

- represents DUT-internal state
for stimulation and check

Data

Entire checking is based on producer-consumer
concept and data consistency using scoreboard
techniques.

March 03, 2003 Verification Glue: How to compose system level environments 11

Example: AMD:'

PCI system-level setup

i HyperTransport™
host side yperTranspor PCI

t BFM

Resp TD | Check TD |< Bus Watcher
Resp Handler Update Unit
Responses

|

Update Ref. Model
(e.g. register set
image)

Single point attachment:

— Update unit, HT2HT
checker,
access error handler

IF-specific trans

Generation

Requests Hg 2 A [EElEr Dual point attachment:
— HT2PCI & PCI2HT checker

are connected to HT and
PCI CTD

March 03, 2003 ‘ Verification Glue: How to compose system level environments 12

Superposition: AMDCH

PCI and USB on system-level

™
host side HyperTransport

Stimulation DUT

Check TD Bus Watcher |

PCI USB
Update Unit Composition
Update - Leverage of all BL checkers working on
Ref. host_trans_s
Model : :
Host2USB Checker Stimulation

— PCI bridge is randomly stimulated
- USB DMA engine works autonomously

Checking
Access Error Handler - Every ch_ecker consumes its applicable
transactions
— PCI can act as subtractive decoder
[] host_trans_s based - Bad access to host memory from any

[IF-specific trans device is signaled as access error

March 03, 2003 ‘ Verification Glue: How to compose system level environments 13

Summary AMD:'
e e ——

e Stimulation and checker components are independent of
host bus specifics.

e Checking is completely independent from stimulus
generation.

e Data flow and consistency check is distinguished from
resource access check, i.e. the legality of memory access.

e Both generation and checking units can be composed
uniformly to build a system level environment.

© 2003 Advanced Micro Devices, Inc.
HyperTransport™ is a licensed trademark of the HyperTransport Technology Consortium.
AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc.

March 03, 2003 Verification Glue: How to compose system level environments 14

