VLSI Implementation of a High-Speed
Iterative Sorted MMSE QR Decomposition

P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber and W. Fichtner
Integrated Systems Laboratory, ETH Zurich, Switzerland
{luethi,apburg,haene,perels,felber,fw } @iis.ce.ethz.ch

Abstract— The QR decomposition is an important, but often
underestimated prerequisite for pseudo- or non-linear detection
methods such as successive interference cancellation or sphere de-
coding for multiple-input multiple-output (MIMO) systems. The
ability of concurrent iterative sorting during the QR decomposi-
tion introduces a moderate overall latency, but provides the base
for an improved layered stream decoding. This paper describes
the architecture and results of the first VLSI implementation of
an iterative sorted QR decomposition preprocessor for MIMO
receivers. The presented architecture performs MIMO channel
preprocessing using Givens rotations in order to compute the
minimum mean squared error QR decomposition.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) is considered to
be one of the key technologies for enabling next-generation
high-speed wireless communication. MIMO systems employ
multiple antennas at both the transmitter and the receiver
in order to increase data rate and link reliability. In spatial
multiplexing mode, MIMO systems reach higher throughputs
by transmitting multiple data streams in parallel in the same
frequency band without additional expense in bandwidth or
transmit power. Consequently, numerous upcoming wireless
communication standards such as IEEE 802.11n or IEEE
802.16 will employ MIMO technology. Unfortunately, the con-
siderable throughput improvements enabled by MIMO systems
entail a significant increase in signal processing complexity,
especially for separating the multiple, parallel data streams.

QR decomposition (QRD) is one of the key algorithms
employed in MIMO systems, since numerous MIMO detection
methods require QR decomposition of the channel matrix as
starting point. The application of QRD ranges from linear
MIMO detection methods to ordered successive interference
cancellation (OSIC) and to tree-search algorithms [1], [2]
with close-to maximum likelihood bit error rate (BER) perfor-
mance. Sorted QR decomposition (SQRD) in conjunction with
successive interference cancellation (SIC) provides a consid-
erable improved BER performance compared to unsorted SIC,
while consuming only little additional hardware resources.

Contribution: In this work, we present - to the best of our
knowledge - the first VLSI implementation of a 4x4 ma-
trix preprocessor performing iterative sorted minimum mean
squared error (MMSE) QR decomposition for OSIC or for
tree-search algorithms. The described VLSI architecture in-
corporates optimized fixed-point arithmetic and shows how a
combination of CORDIC circuits and complex-valued multi-
pliers allows to achieve a very high throughput with low silicon

area. The implemented reference design in a 0.25 pym tech-
nology processes 1.56 million complex-valued 4x4 channel
matrices per second maintaining close-to floating-point BER
performance for OSIC detection up to a signal to noise ratio
(SNR) of 40 dB.

Outline: The remainder of this section introduces the sys-
tem model and motivates the development of a high-speed QR
decomposition circuit. Sec. II introduces the sorted MMSE
QR decomposition algorithm under consideration. Sec. III
describes the high-level VLSI architecture of the SQRD unit
and the corresponding micro-architectural choices for the im-
plementation of the arithmetic units. Complexity/performance
trade-offs associated with different sorting strategies and fixed-
point considerations are discussed in Sec. IV and implemen-
tation results are presented in Sec. V.

Notation: Bold uppercase and lowercase letters represent
matrices and column vectors, respectively. The ¢th column
vector of H is denoted by h;, and H; ; stands for the element
in row ¢ and column j of H.

A. System Model

The system under consideration is a MIMO system with Mp
transmit and Mg receive antennas. The matrix H describes the
MIMO channel, the M7 x 1 transmit signal vector is denoted
by s = [s1...51,]7, and the vector n represents the additive
zero-mean i.i.d. Gaussian noise with variance o2 per complex
dimension. The transmitted vector symbol is normalized such
that E{ssf} = I,;,.. The corresponding receive signal vector
y = [y1...ynmpz|T is given by

y=Hs+n (1
and the signal to noise ratio is defined as SNR = 1/02.

B. MIMO Detection based on QR Decomposition

The task of the MIMO receiver is to recover s from Yy,
assuming knowledge of the channel H. To this end, many
computationally efficient MIMO detection algorithms start
by decomposing H into a unitary matrix QQ and an upper-
triangular matrix R using QR decomposition such that H =
QR. The transformation y = Qy then transforms the
problem in (1) into

y =Rs+n, 2

which is fully equivalent, but can be solved with significantly
reduced computational complexity (for example through back-
substitution or sphere decoding).

The MMSE QR decomposition is a slight modification to
the QR decomposition of H required for example for zero-
forcing linear or OSIC detection. The basic idea is to take
the additive noise into account by considering an augmented
channel matrix H = [HY 5,1 }T to obtain Q = Q, and

R such that
Q. Q][R] [H
BRI R B B

The QR decomposition of the augmented channel matrix
has a computational complexity that is roughly 50% higher
compared to the QR decomposition of H [3]. However, the
algorithm achieves an improvement in BER performance with
linear detection and a significant complexity reduction with
tree-search based MIMO detection algorithms.

II. SORTED MMSE QR DECOMPOSITION ALGORITHM

The MMSE QR decomposition of H can be performed
through the Gram-Schmidt [4] orthogonalization or through
a sequence of unitary transformations. The main advantage
of unitary transformations resides in the fact that one can
employ vector rotations as atomic operations which preserve
the total power of the operands. Hence, the dynamic range
of all variables is tightly bounded and the algorithm is well
suited for fixed-point arithmetic.

To simplify the notation, the composite matrix

_| H Iu
Z [U'nI]wT 0] (4)
is introduced. Each Givens rotation, described by the matrix
©;, is designed to selectively zero a single entry of Z(®). In
order to upper-triangularize the left half of Z(?), the iteration
Z() = ©,Z0~1 is applied, which ultimately yields

H

Z™M — 0y ...0,20 = [IO‘ 8;@, } ,)
where the nulling proceeds first row-by-row and then column-
by-column as illustrated in Fig. 1 for ¢ =1,2,..., N. The
relevant parts of Z(N) for further MIMO processing are R.
and Q. The sorting follows the original SQRD algorithm
proposed in in [5]. However, while the original description was
based on a modified Gram-Schmidt procedure, it is adapted
in Alg. 1 to be used with Givens rotations.

III. VLSI ARCHITECTURE

The application field of the circuit developed in this paper
are MIMO-OFDM systems where SQRD must be performed
on a large number of channel matrices in a short time [6].
The subsequent architectural considerations target therefore
the high-speed region of the design-space.

A. Resource Allocation and Scheduling

For the design of a suitable high-level VLSI architecture,
we start by identifying the two types of atomic operations
required for Givens rotations, in order to finally constitute the
QR decomposition algorithm described in the previous section:
Vectoring subsumes the computation of ©; and the associated
nulling of the corresponding entry in Z(*). Rotation refers to

Algorithm 1 MMSE-SQRD based on Givens rotations
1 Z=2ZO p=1[1...My]
2: for j=1,..., My do
30 & =hyl?

4: end for
5: fori=1,...,Mr do
6: k=arg minj:iw)MT &)
7: exchange columns ¢ and k in order array p and in the
first Mg 4+ i — 1 rows of Z
8: compute a series of Givens rotations ©,, such that rows
i+ Mg,...,i+ 1 of column z; become zero:
iM
Z= (Hu:l(%ifl)JVIRﬁ»l Qu) Z
9. for j=14,...,Mp do

10: & =& — |21
11: end for
12: end for

initial column norms

update column norms

the application of ©; to an individual column of Z(), in which
only two entries are affected by the transformation.

As can be seen from the illustration in Fig. la, each vec-
toring operation is followed by multiple rotation operations.
Hence, the number of vector rotations exceeds by far the
number of vectoring operations, even if explicit rotation is
avoided when the affected entries of Z(*) are a-priori known
to be zero. Since a VLSI architecture for high-speed ma-
trix processing needs super-scalar execution units, dedicated
hardware resources are allocated for vectoring and rotation,
allowing both operations to be carried out concurrently as
illustrated in Fig. 1b. The rotation circuit is optimized for
speed since the number of operations to be carried out is large.
The vectoring circuit needs to perform fewer operations, it can
therefore be designed to require less silicon area by applying
iterative decomposition. These dedicated VLSI optimizations
do not affect the overall throughput of the QR decomposition
unit, because the total processing time for the area-optimized
vectoring operations can be hidden behind the large number
of rotation operations.

a) i=1 i=2 i=N complete
cccijoo1r cccjoo1 RCcC|CCC RCCc|CcCC
cccijoro ceecjoro 0 RClCCC o0RC|CCC
C€Ctoo RECCOO 0 oC€ee oo RCCC
ROOOOOD 0 CC|COO 0 0O RCELCO 00 O0O|CCC
0OROOOO OROJ|OOO 00o0CCO O0OOCCO
00 RIOOO 0O O0R|OOO 000ICOO0 OOO|COO
b)
(i=1 [i=2) (i=38) i=N Vectoring
OO0 Rotation
cycles
Fig. 1. a) Illustration of the MMSE QR decomposition sequence. The initial

matrix Z(©) is shown at the left, the final result Z(N) of the decomposition
at the right. b) Parallel processing of vectoring and rotation in the proposed
VLSI architecture.

B. Implementation of Givens Rotations

The two basic operations for Givens rotations, vectoring
and rotation, can both be implemented using conventional
arithmetic or dedicated CORDIC circuits [7]. CORDICs are

a well-established method to implement Givens rotations in
hardware. In short, the concept of the CORDIC algorithm is
to decompose the rotation of a vector into a series of micro
rotations by applying shift and add operations. This sequence
of shift and add operations is first determined by the vector-
ing block, and afterwards executed similarly by the rotation
block. A more detailed analysis shows that CORDICs are
particularly well suited for the area-efficient implementation
of vectoring using iterative decomposition, while fast rotation
can be realized more efficient by using conventional complex-
valued multipliers [3], but this implies the availability of the
corresponding complex-valued rotation coefficients. A solution
to this problem is to attach an area-optimized slave CORDIC
in rotation mode to the vectoring CORDIC as shown in Fig. 2.
The input to this slave CORDIC is a unit vector, prescaled by
the CORDICs constant scaling factor . The corresponding
output values are the coefficients required for the multipliers
which carry out the vector rotation.

| X 1Y |0 |~
i N A i 2. A
direction
Master log Slave
CORDIC CORDIC
vectoring only rotation only
\J \ \]
X' cos(x) sin(x)

Fig. 2. Enhanced vectoring CORDIC, computes directly cos(z) and sin(z)
for subsequent vector rotations using standard multiplications.

C. High-level Architecture

The overall VLSI architecture of the QR decomposition
unit is shown in Fig. 3. The dedicated vectoring and ro-
tation circuits (using CORDIC and conventional arithmetic,
respectively) are extended to handle complex-valued matrix
entries. The memory which stores the original and intermediate
matrices Z(?) is shown as QR Cache and is realized using
RAMs with a dedicated read and write port. To satisfy the
high memory bandwidth requirements of the rotation block
(two read and two write accesses per cycle), the cache is
split into two independent memory banks. One bank holds
the even rows, the other holds the odd rows of Z(®. Since the
rotation block always requires the full memory bandwidth, the
vectoring block is fed by a separate FIFO and an additional
shadow memory. This solution prevents the rotation block
from being stalled by memory access conflicts.

D. Iterative Sorting

The iterative sorting described in Alg. 1 is a key feature of
this circuit. The sort metrics are the column norms of Z(%),
which are completely calculated for Z(°) at the beginning
of Alg. 1 in line 3, and which are then iteratively updated
for Z(4), 7 > 1 in line 10. The recursive column-norm update
procedure requires few additional hardware resources' and re-
ordering of the columns of Z(?) can be implemented efficiently
with simple address remappers shown in Fig. 3. However,
the sorting occasionally hinders the parallel processing of

'In order to reduce hardware complexity, the squared £2-norm in Alg. 1
can be approximated for example by the #!-norm or by the £°°-norm.

Iterative Ordering Shadow QR Cache (H,! / R,Q)
(column remapping) Memory [(separate read and write ports for even and odd rows)
N read port write port
orm
Computation H ’ * ' ' _ f * ‘ ‘
2| Read Address Remapper »| Write Address Remapper |
read T T mamory Y Y
y address vy oypass
7 LoadiaR E -
E Control U
vy v |~ 0 onf C c ko I3
N ’
Theta N ;o RThet.a
Vectoring y y y otation
—j6
Complex € Complex
Vectoring e—I¢ Vector
CORDIC Rotation
Phi Phi
Vectoring Y R (C (C \ Rotation Rotation
A Yy N
! D!
‘o N
Writeback write
Control address [
diagonal + H
elements

Fig. 3. VLSI architecture of the low latency iterative sorted MMSE QR
decomposition with super-scalar vectoring and vector rotation.

vectoring and rotation. The problem arises when the update of
one column norm needs to wait for the completion of outstand-
ing rotation operations. In this case, also the next vectoring
operation needs to be delayed, until the next column to be
processed can be identified based on the updated norms. As
a consequence, iterative sorting introduces an additional delay
compared to QR decomposition with a fixed column order.
Speculative vectoring of the first element in a new column
of Z(helps to reduce the associated performance penalty.
However, as can be seen from the comparison in Tbl. I, a
small increase in the number of cycles compared to unsorted
or one-time (a-priori) sorted QR decomposition remains.

TABLE I
PROCESSING TIME OF DIFFERENT MODES

Processing time
per 4x4 matrix
67 cycles / 536 ns
67 cycles / 536 ns
80 cycles / 640 ns

Mode

unsorted MMSE-QRD
one-time sorted MMSE-QRD
iterative sorted MMSE-QRD

IV. IMPLEMENTATION TRADE-OFFES

Implementation trade-offs comprise the sorting strategy and
the choice of the fixed-point parameters. For the subsequent
analysis, consider a MIMO system with My = Mgr = 4,
16-QAM modulation and MMSE-(O)SIC detection.

A. Impact of the Sorting Strategy

The BER simulation results for different sorting strategies
are shown in Fig. 4. Clearly, a simple one-time sorting as
used in [6] already provides a significant performance gain
compared to unordered SIC. The iteratively sorted QR de-
composition closes the gap between the highly complex, but
optimal V-BLAST [8] ordering and the very simple, but less
effective one-time sorting.

r : : :
—A— MMSE-SIC unsorted i
—6— MMSE-SIC one-time sorted I

1| =~ MMSE-VBLAST
| 8 MMSE-SQRD SIC floating-point
-4 - MMSE-SQRD SIC HW [9 6]
-6- MMSE-SQRD SICHW [107] H
-%- MMSE-SQRD SIC HW [
- - MMSE-SQRD SIC HW [
[

24 26 28 30 32 34 36 38 40

Fig. 4. BER performance of different MIMO detection methods for uncoded
16-QAM, M1 = Mpg = 4, and perfectly known H and o, ([x y] denotes
total number of bits including the sign bit, and fractional bits, respectively)

B. Fixed-Point Considerations

A critical aspect for the efficient implementation of the
QR decomposition unit is a conservative choice of the fixed-
point parameters. The ultimate performance measure is the
implementation loss which relates the BER performance of
a fixed-point receiver implementation to the BER achieved
with a corresponding floating-point receiver. Unfortunately,
analytical expressions for this implementation loss as a func-
tion of the number of integer and fractional bits used for
the intermediate variables and for the number of CORDIC
iterations used for the vectoring are not available. Hence, we
must resort to Monte-Carlo simulations. Corresponding results
are shown in Fig. 4, where only the QR decomposition has
been implemented in fixed-point, while the detection stage
performing SIC has been implemented using floating-point
arithmetic to clearly separate the two units. Moreover, the
input matrix is assumed to be scaled such that the maximum
absolute value of real and imaginary parts does not exceed
one (block floating-point).

V. IMPLEMENTATION RESULTS

The presented circuit has been implemented in a 0.25um
1P/SM CMOS technology. It supports all possible configura-
tions deducted from My < Mpg < 4. The sort mode can
either be disabled, or set to one-time or iterative sorting. To
achieve close to floating-point performance up to an SNR
of 40 dB, an internal quantization setting of 3 integer and
10 fractional bits has been chosen together with 9 CORDIC
iterations for vectoring. With iterative sorting based on the
¢?-norm, the corresponding design requires only 54k gates
(2.1mm?,0.254m) and a suitable detection unit [6] would
occupy an additional 23k gates (0.9mm?,0.25um).

In comparison, the MMSE V-BLAST described in [9] has
a footprint of 9.0mm? in a 0.35um technology which corre-
sponds to roughly 190k gates. A first reason for this significant
area penalty is the fact that the V-BLAST algorithm employs
two sequential sets of unitary transformations instead of one,
which translates either into a twofold area or into a twofold
increase in processing time. A second reason lies in the higher

|~ Vectoring -

i i IS MiMO |

Fig. 5. Layout of the iterative sorted QR decomposition ASIC in 0.25pm
1P/5SM CMOS technology: 125 MHz maximum clock frequency and final
core area of 2.61 mm? at 83% core utilization.

sensitivity of the V-BLAST algorithm to quantization effects,
which ultimately calls for more complex arithmetic units.

VI. CONCLUSIONS

MMSE-SQRD is a key preprocessing step for many relevant
MIMO detection algorithms, including successive interference
cancellation and sphere decoding. The key to an area ef-
ficient, high-throughput VLSI architecture is the joint con-
sideration of algorithmic and VLSI implementation aspects.
The implemented MMSE-SQRD algorithm employs Givens
rotations. The corresponding rotation matrices are obtained
with CORDIC circuits and are applied through complex-
valued multipliers. The iterative sorting adds only a small
penalty in terms of silicon area and throughput, but provides
a considerable BER performance improvement with OSIC
and potential for complexity reductions in numerous advanced
MIMO detection schemes.

ACKNOWLEDGMENT

This work is supported by the STREP project No. IST-
026905 (MASCOT) within the sixth framework program of
the European Commission.

REFERENCES

[1] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and
H. Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoder algorithm,” IEEE Journal of Solid-State Circuits, 2005.

[2] L. G. Barbero and J. S. Thompson, “Performance analysis of a fixed-
complexity sphere decoder in high-dimensional mimo systems,” in Proc.
IEEE ICASSP, vol. 4, May 2006, pp. 557-560.

[3]1 A. Burg, VLSI Circuits for MIMO Communication Systems, Feb. 2006,
Ph.D. dissertation, IIS/ETH-Zurich.

[4] G. H. Golub and C. F. Van Loan, Matrix Computations.
Univ. Press, 1996.

[5] D. Wiibben, J. Rinas, R. Bohnke, V. Kiihn, and K. Kammeyer, “Efficient
algorithm for detecting layered space-time codes,” in Proc. ITG Confer-
ence on Source and Channel Coding, Jan. 2002, pp. 399-405.

[6] D. Perels, S. Haene, P. Luethi, A. Burg, N. Felber, W. Fichtner, and
H. Boleskei, “ASIC implementation of a MIMO-OFDM transceiver for
192 mbps WLANS,” in Proc. IEEE ESSCIRC, 2005, to appear.

[7] J. Volder, “The CORDIC trigonometric computing technique,” IRE Trans.
Electronic Computers, vol. EC-8, no. 3, pp. 330-334, Sept. 1959.

[8] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “VBLAST:
An architecture for realizing very high data rates over the rich-scattering
wireless channel,” in Proc. IEEE ISSSE, Oct. 1998, pp. 295-300.

[9] Z. Guo and P. Nilsson, “A VLSI implementation of MIMO detection for
future wireless communications,” in Proc. IEEE PIMRC, vol. 3, 2003,
pp. 2852-2856.

John Hopkins

