Eidgenossische Ecole polytechnique fédérale de Zurich
Technische Hochschule Politecnico federale di Zurigo
Ziirich Swiss Federal Institute of Technology Zurich
Department of Information Technology Integrated Systems Laboratory
and Electrical Engineering

Stereopsis: Depth mapping
using stereo vision

VLSI Chip Design Semester Project

Winter Term 2002/03

Authors: Michael Kuhn, Stephan Moser, Oliver Isler
Advisors: Frank Giirkaynak and Andreas Burg

Zurich, February 8, 2003

i

Preface

A few years ago Stephan and his brother tinkered with an autonomous vehicle
made from an old radio controlled racing car. A fundamental limitation in
their effort for vehicle navigation was the lack of a distance measuring device.
An ultrasonic device proved unreliable and laser based equipment was too
expensive. Stereo vision appeared as a possible solution for a next generation
vehicle so they did some experiments with pictures from a digicam and a
couple of Java functions.

During summer term 2002 this idea was picked up again and the al-
gorithms were improved. During the VLSI I course at the Swiss Federal
Institute of Technology in Zurich the idea of building an ASIC device for
this task emerged and led to this VLSI design project.

Special thanks go to the following persons:

e Dr. Huber Kaeslin and Dr. Norbert Felber for two intense lectures on
hardware design and for giving us the chance to perform a comprehen-
sive VLSI project.

e Frank Guerkaynak and Andreas Burg for their patient and competent
assistance and for having a good time together.

e Dr. Tomas Svoboda for the review of our algorithm and his advice
concerning the stereo vision task.

v

Contents

Introduction

The Stereo Matching Problem

21 General Tasko

2.2 Principal Observations

2.3 Algorithmic Approaches
2.3.1 Matching Techniques
2.3.2 Treating Occlusion
2.3.3 Post-filtering the Results

2.4 Parameters of the Input Pictures

Implemented Algorithm

3.1 Algorithm Evaluation
3.1.1 Constraints
3.1.2 Conclusions

3.2 The Algorithm in Detail
3.2.1 LSQ correspondence function
3.2.2 Census correspondence function

Architecture

4.1 Top Level Architecture

4.2 Module Level Architecture

4.3 Input Buffer Module
4.3.1 Task of the Input Buffer
4.3.2 Architecture of the Input Buffer

44 LSQModule.
4.4.1 Task of the LSQ Module
4.4.2 Architecture of the LSQ Module

45 Census Module oo,
4.5.1 Task of the Census Module
4.5.2 Architecture of the Census Module

13
13
13
14
16
19
20

vi

CONTENTS

4.6 Displacement Module
4.6.1 Task of the Displacement Module
4.6.2 Architecture of the Displacement Module

4.7 Merger Module oo
4.7.1 Task of the Merger Module
4.7.2 Architecture of the Merger Module

4.8 Output Filter Module
4.8.1 Task of the OQutput Filter Module
4.8.2 Architecture of the Output Filter

Reference Model

A.1 Environment for Algorithm Development
A.2 Bit-true Reference Model
A3 Usageofthe Tools

Glossary
Gallery

Data Sheet of the “Real Time Stereo Vision Chip”
D.1 Description
D.2 Features
D.3 Application
D.4 Functional Block Diagram
D.5 Typical System Architecture
D.6 Specifications
D.7 Interface L
D.7.1 Protocol Signals L.
D.7.2 Configuration Signals
D.7.3 Disparity Map
D.74 ImageBorders.
D.75 Timing oo
D.8 84-Pin JLCC Package

Chapter 1

Introduction

Depth mapping is a technique in computer vision that allows the reconstruc-
tion of spatial depth from stereo pictures. It is based on the observation that
an object that is pictured using two parallel cameras with a horizontal offset
yields a displacement in the two images that is dependent on its distance
from the camera setup. A camera image captures a certain area of the sur-
rounding room at once unlike e.g. a laser beam which only points at one spot
at a time. This allows one to get an immediate impression of the vicinity
without any scanning technique or any moving measuring devices. Depth
calculation is achieved in three steps: Feature detection extracts characteris-
tic areas from the pictures. Displacement calculation matches those features
within the two images and determines their perspective displacement, result-
ing in a so-called displacement map. Depth calculation finally is a simple
geometric transform that yields real-world distances from the displacement
map. Advanced stereo algorithms take long calculation times and operate on
the entire images, exploiting e.g object recognition techniques and geometric
object modeling.

The goal of this project was a real-time implementation of a stereo system
in an ASIC. This chip should provide a means for autonomous vehicles to
immediately recognize approaching obstacles, enhance navigation and plan
possible pathways. Since the technology set tight limits on on-chip memory
(see subsection 3.1.1 for more details), the algorithm had to work on par-
tial images - the final version works on three image lines at a time. Two
different matching techniques with different characteristics that complement
each other to a certain degree were combined. The desig is strongly data-
flow oriented. However, buffers are needed at intermediate steps. The design
delivers raw binary image data by a simple protocol that needs an external
interface to cameras and display modules or any other form of processing
unit.

Introduction

Chapter 2

The Stereo Matching Problem

This section introduces some important problems of depth calculation by
stereo vision. Further, important terms related to stereo vision are intro-
duced.

2.1 General Task

The goal of stereo vision is to calculate a depth map from two or more given
input images which show the same scene from different points of view. Most
algorithms work on two input images taken with a certain horizontal dis-
placement (binocular setup). The main problem is independent from the
camera setup, however. The task is to identify corresponding objects or im-
age regions in the input images. In the binocular setup with horizontally
aligned cameras, for example, an object in the right image appears in the
left image with a certain horizontal displacement.

In literature, the displacement between corresponding objects in different
images is usually referred to as disparity, while the actual distance of the
object to the camera setup is usually called depth [6]. It holds that the
larger the disparity, the smaller the distance of the observed object from
the camera setup. The relation between disparity and depth is approximately
inversely proportional [6]. An image which assigns a certain color for each
disparity or depth value to every pixel is called a disparity map or depth
map, respectively.

2.2 Principal Observations

There are two fundamental assumptions underlying the stereo matching task

[6]:

4 The Stereo Matching Problem

Figure 2.1: Two stereo pictures and a resulting displacement map

1. uniqueness

2. continuity

The uniqueness assumption states that only one single disparity can be
assigned to every point of an input scene. Problems with the uniqueness
assumption emerge as soon as reflections and transparent areas are present.
If, for example, a tree is seen through a window, there is an ambiguity be-
cause a single image point contains the depth of the window as well as the
depth of the tree [7]. The continuity assumption states that the disparity
varies smoothly in almost every region of the scene. In [1] a third, so called
stmalarity assumption, is introduced, which states that correponding points
have similar local features.

Unfortunately, there are some problematic observations to the stereo task
as well. As stated in [6], the stereo matching problem is an ill-posed problem
because of two reasons:

1. data uncertainty

2. structural ambiguity

2.2 Principal Observations 5

Data uncertainty particularly exists in homogeneous (i.e. poorly tex-
tured) areas. It is obviously difficult or even impossible to match a part of
a white wall in one image to exactly the same part of the wall on a dif-
ferent image. The term structural ambiguity expresses the fact that it is
often difficult to assign the correct disparity to periodically structured areas.
It is impossible to find the corresponding part of a grid in two pictures by
only considering a small part of the grid, because the same part is repeated
periodically. Structural ambiguities can partly be solved by using a larger
number of cameras.

Another problem in stereo vision are occluded areas. An occluded area
is an area which cannot be seen by all cameras. In the binocular setup
we can distinguish between binocularly visible (or non-occluded) areas and
monocularly visible (or partly occluded) areas [6]. Partly occluded areas are
seen by one camera only. Further, there exist fully occluded areas, however,
they are not of interest, because they do not appear on any of the input
images.

cl c2 cl c2

Figure 2.2: Partly occluded areas, as shown in [6]

Figure 2.2 shows two different reasons for partly occluded areas. Further,
there exist so called mutually occluded regions, where between two foreground
objects completely different background objects appear (see figure 2.3). It is
impossible to assign a disparity value to a monocularly visible area since no
matching counterpart can be found in the other picture. A stereo algorithm
should be able to detect occluded areas. Of course, the number of occluded
areas can be reduced by increasing the number of cameras observing the
scene [7].

The Stereo Matching Problem

cl c2

Figure 2.3: Mutually occluded areas, as shown in [6] and [8]

2.3 Algorithmic Approaches 7

2.3 Algorithmic Approaches

2.3.1 Matching Techniques

There are several criteria to classify stereo algorithms. A first distinction
can be made based on the elements being matched. The algorithms are often
classified into edge based and area based approaches. Edge based algorithms
work on the features (or edges) of objects only, while area based algorithms
try to match entire image regions.

A lot of image information is neglected when only working on extracted
features. Thus, feature based algorithms generally yield sparse but quite
exact disparity maps. Area based approaches, on the other hand, produce
dense disparity maps, since they work on the entire image. However, in an
area-based approach there can be parts of more than one object within one
search patch which can have different depths. Consequently, not every area
can be assigned a clearly defined disparity or depth. Using smaller search
patches can reduce this problem. Larger patches yield better results when
only containing parts of one object, however, because of the better signal-to-
noise ratio’ see (i.e. because there are more features that can be matched, and
the noise therefore becomes neglectable). Thus, the area size is a trade-off
between high resolution and good matching capabilities. Several approaches
use adaptive area (or window) sizes for that reason.

Another criteria to classify algorithms is the distinction of global and local
methods. While global methods work on previously defined world models and
check global consistency based on the results of local methods, local methods
only take into account small elements of the input images at a time [6]. When
using cameras aligned in a parallel way, or accordingly corrected images, local
methods can even work on one scan-line (one horizontal row of pixels) only.

Another way to look at the algorithms is to compare the correspondence
function that is used to determine the degree of similarity of two image re-
gions. There are different methods that work on pure image data, like sum
of squared differences, sum of absolute differences or normalized cross cor-
relation. Other methods first transform the image data before applying the
actual correspondence function. Often, so called non-parametric transforms
are applied. They are based on the ordering among data values rather than
the data values themselves, and so get insensitive to problems that may ap-
pear because of very bright or dark images or because of large differences in
intensity of only one single pixel. The most popular non-parametric trans-
forms in the area of stereo vision are the rank transform and the Census

!Please find a definition of the “signal-to-noise ratio” in the glossary on page 45

8 The Stereo Matching Problem

transform [2] [5]. Another transform is used by the Marr-Poggio-Grimson
algorithm which is often cited in stereo literature. It uses a “Laplacian of a
Gaussian” (LOG) filter, which emphasizes features before they are matched.

2.3.2 Treating Occlusion

As stated before, occlusion is an inherent problem of stereo vision. There-
fore, a sophisticated algorithm needs to deal with it. There exist different
approaches to tackle the problem. The most obvious one is to use more than
two cameras. However, this approach significantly increases the amount of
data to be processed and therefore needs a lot of computing resources.

Other methods take advantage of the observation that matches in oc-
cluded areas are mostly matches of poor quality and the resulting image area
is noisy. According to the continuity assumption, these areas can be detected
as incorrectly matched [7].

Another approach used in stereo vision is to apply a so called left-right
consistency check. Here, the disparity is first calculated using a patch of
the right image as reference and searching the corresponding patch in the
left image (RL case). The same is done in the opposite direction (LR case).
Ouly if both search directions yield the same disparity (within a certain
tolerance), the result is accepted, otherwise it is discarded [4].

2.3.3 Post-filtering the Results

Finally, the disparity map produced by a stereo algorithm is often post-
filtered to reduce noise and the number of erroneous results. Post-filtering is
often based on inter- and/or intra-scan-line consistency. A simple but efficient
way to reduce noise is the median filter proposed by [4]. It eliminates a pixel
from the disparity map if less than five pixels in its 3x3 neighborhood have
assigned a disparity, and otherwise takes the median of the sorted disparities
of the neighboring pixels.

2.4 Parameters of the Input Pictures

The number of input images significantly affects the task of a stereo algo-
rithm. The higher the number of input images, the more efficiently occluded
areas can be avoided and the better is the signal-to-noise ratio when matching
areas, since the features remain the same on all images that the noise is ran-
domly spread over them. Unfortunately, the amount of computing resources
needed to deal with the input data increases as well.

2.4 Parameters of the Input Pictures 9

During the analysis of the camera setup it was observed that even in a
binocular setup many free parameters exist. First, one can align the optical
axis of the cameras in a parallel or a non-parallel way. When choosing a non-
parallel setup, corresponding objects are no longer on the same horizontal
axis (see figure 2.4). When using such a setup, the images are often rectified

T

|

K

Figure 2.4: Objects are no longer on the same horizontal axis on an non-
parallel setup

before the actual stereo algorithm is being applied [6].

A slightly different alignment in vertical direction can be a substantial
problem for certain algorithms. This particularly holds for algorithms that
work on one scan-line only. A displacement of only two pixels in vertical
direction may already lead to totally unacceptable results (see figure 2.5) [5].
Other setup parameters like the horizontal displacement of the cameras have
rather little effect on the stereo problem.

Not only the parameters of the camera setup, but also the output of a
single camera may have a non-negligible effect on the stereo task. There is
an effect called radial distortion, caused by lenses that have slightly different
magnifications in the middle and at the border. The effect on a picture as
well on the resulting output of a stereo algorithm is illustrated in figure 2.6.

It also matters whether color or gray-scale cameras are choosen. Obvi-
ously, colored pictures contain more information which can be used to find
correct matches. According to [4] the improvement of the signal-to-noise ra-
tio is somewhere between 20 and 25 percent when using color information
instead of gray-scale values.

10 The Stereo Matching Problem

Figure 2.5: If the cameras are not well aligned in vertical direction, it may
lead to unacceptable stereo results [5].

2.4 Parameters of the Input Pictures 11

Figure 2.6: The left pictures demostrate stereo results with radially distorted
input images. On the right, the effect was corrected prior to the calculation

[9].

12

The Stereo Matching Problem

Chapter 3

Implemented Algorithm

This chapter discusses the algorithm implementation and the constraints that
influenced its design.

3.1 Algorithm Evaluation

3.1.1 Constraints

The integration of a stereo vision machine in an ASIC sets strong restrictions
on the algorithm selection. This section should give a brief overview of the
constraints given by the UMC 0.25 um fabrication technology and the project
goals.

The total chip size available for this student project was restricted to
approximately 2.435 mm x 2.4355 mm with a core area (including global
and power routing) of roughly 1.887 mm x 1.887 mm = 3.56 mm?. This
area corresponds to approximately 120’000 gates. Further, a limit of 84 pads
(including power pads) was given.

Storage capacity is usually a though constraint in integrated circuits.
Unfortunately the UMC process does not provide SRAM structures, but
memory macro cells with rather low density. A 32 x 256 bit memory cell,
for example, occupies about 0.31 mm?, or 10 percent, of the available core
area. Thus, using a memory of more than about 4 KB in size turns out to
be unreasonable.

What’s more, a memory macro cell provided by UMC can store a max-
imum of 256 words. Therefore, a width of 256 pixels was practical for the
input images. For a height of 192 pixels, this yields a total amount of ap-
proximately 50’000 pixels per input image. The target for the project was a
frame rate of at least 25 images per second (which yields the appearance of

14 Implemented Algorithm

a fluent movement to the human eye). Thus, the minimum pizel frequency
is at least 1’250°000 pixels per second. For a clock frequency of 100 MHz
(which is a reasonable frequency for the fabrication technology used), this
results in about 80 clock cycles per pixel.

Considering the memory restrictions above , it becomes obvious that only
parts of an image can be stored. Therefore, a data flow oriented algorithm
was called for.

Since the in- and output devices are not specified, the IO interface was
held abstract. Thus, no special timing constraints given by an IO protocol
of a particular device need to be satisfied.

Further, there were no restrictions concerning the power consumption.

3.1.2 Conclusions

As described in the introduction to stereo vision, an inherent and important
part of the problem is the matching of image regions. Therefore, special
attention should be paid to the image regions being matched and to the
correspondence functions themselves.

According to the stated memory limits above, it is not possible to store
whole images on the chip. Since usual cameras deliver images row by row, a
row-based image processing was aimed at.

Experiments showed that good results could be reached using a combi-
nation of two different correspondence functions. These functions are a least
square (LSQ) comparison of the pixel intensities and a Hamming distance®
calculation on Census transformed image regions (refer to sections 3.2.1 and
3.2.2 for details). While the LSQ function can work on image regions of any
shape, the Census function needs at least three rows and three columns of
input at a time, since the Census transform is defined on 3 - 3 pixel blocks.

The amount of data storage is also affected by the decision whether to
use color or gray scale images. While one image row (256 pixels) requires 2
kBit of memory in the case of gray scale (8 bit) images, three times as much
is needed for true color (24 bit) images.

The decision tree in figure 3.1 shows that either a color solution with one
image line processed at a time or a gray scale solution with three image lines
processed at time is possible to implement. While the three line gray scale
solution offers enough data to perform a Census function, this is not the case
fot the single line color solution. The quality improvement resulting from
the Census Function proved to be greater than the one resulting from color
images.

'For a definition of the “Hamming distance” see glossary on page 43

3.1 Algorithm Evaluation 15

Census/LSQ(3)
mem: 3*256

3 lines
LSQ(3)
mem: 3*256

Census/LSQ(1)
mem: 3*256

Census
mem: 3*256

Grayscale

Census/LSQ(3)
mem: 3*3*256

LSQ(3)
mem: 3*3*256

Census/LSQ(1)
mem: 3*3*256

[{]
© &
(7]

I ER)

)* S*

o m3

g O E

o £
£

Figure 3.1: Correspondence function selection tree: A one-line Census trans-
form requires three on-chip image lines. All memory figures are doubled due
to the presence of a left and a right image channel. The figures grow by a
factor of four if occlusion detection by RL-LR (see 2.3.2) is applied as well.
The memory values are in “bytes”.

16 Implemented Algorithm

The quality improvement that could be achieved by the use of color images
did not seem to justify the omission of the Census function (which requires
three image lines) and the larger storage capacities needed for three color
channels. Therefore, it was decided to implement a gray scale solution which
could exploit the advantages of both the LSQ and Census approaches.

3.2 The Algorithm in Detail

The implemented algorithm is based on block searching. Blocks of 3-10 pixels
are extracted from every (x,y)-position in the right image and are searched
for in the left image with a horizontal displacement of 0 to 24 pixels?. The
two pixel blocks are called the reference block (static, right image) and the
scan block (displaced, left image). See figure 3.2 for a schematic and find in
figure 3.3 a real-world example of a 3-10 reference block an the corresponding
search area in two images with a resolution of 256 - 192.

Left image Right image

reference block

- J

X position displacement X position
(0..24 pixel)

Figure 3.2: Block matching: The center of the block represents a virtual
pixel position that all further calculations relate to. The left-to-right case
(LR case) for occlusion detection works symmetrically.

These blocks are compared by two different correspondence functions
called the “LSQ” and “Census” functions. These functions yield a match-
ing quality for each displacement. The displacement value with the highest
matching quality is recognized as the disparity search result for the present
search operation.

2This value was found to be reasonable with respect to the image width and a common
camera setup with a 10 centimeter camera displacement.

3.2 The Algorithm in Detail 17

S T A A

O
ENEESN

Figure 3.3: The top image illustrates the size of a reference block in relation
to the input image. The bottom image shows the complete region of 25
displacement positions where the scan block is shifted over in search of the
best match.

18 Implemented Algorithm

Both the LSQ and Census correspondence function units get the same
input blocks, but differ in their output since they evaluate a match by dif-
ferent criteria; they complement each other to a certain degree with respect
to their matching characteristics (see 3.2.1 and 3.2.2). For the LR case, two
more function units exist. See figure 3.4 for a comparison of the different
results according to the two correspondence functions.

Figure 3.4: The top images show stereo input images. In the middle to the
left is a LR LSQ result image, next to a RL Census result image. The bottom
line shows the output of the merger unit and and a postfiltered final output
image (median filter).

The output image has a different perspective than the right and left input
images: its virtual viewpoint is exactly in the middle of the right and left
camera viewpoint. So the disparity results are perspectively mapped to the

3.2 The Algorithm in Detail 19

middle of the scan and reference block positions (see figure 3.5).

reference
block

RV 1/2

perspectively
correct position

Figure 3.5: Stereo perspective: A virtual viewpoint in the middle of the left
and right image sources is created.

The displacement values for all positions are collected along with their
matching quality. If there is more than one match for a certain position,
the match with the highest matching quality is chosen as the result. For
occlusion detection, the algorithm is applied twice: Once with the left image
as the source of the reference blocks and the right image for the scan blocks
(LR case) and a second time vice-versa (RL case). This yields four sources
of matching results: The LSQ and Census correspondence functions applied
both in the RL case and LR case. Those four results are combined by a con-
figurable merging function into one raw disparity map, thereby performing
the actual occlusion detection. Moreover, the results of the two correspon-
dence function types are combined to benefit from the strengths of both. To
eliminate poor matches and image noise, the raw output image is filtered by
an output filter that implements a heuristic and a median filter function.

3.2.1 LSQ correspondence function

The LSQ correspondence function defines the similarity of two blocks of
pixels in a straight-forward least-square fashion: T'wo blocks of 3-10 pixels are
compared by building the pixel-wise differences in intensity. These differences
are squared and summed up. The lower the sum, the more similar the two
blocks are.

The LSQ function works best on feature-rich image regions. It is specially
well suited for matching edges and contures. For homogeneous areas it does
not always yield good results.

20 Implemented Algorithm

3.2.2 Census correspondence function

The Census correspondence function is based on a non-parametric transform.
That is, the criterion for similarity rests upon relative intensity values. A
Census transform is defined for a single pixel that is located in the middle of
a 3- 3 block of pixels: Its intensity value is compared to all eight surrounding
pixel intensities. A “1” is set if it is higher, otherwise the result is a “0”.
This yields an eight bit wide binary string. This string relates the pixel to
its close surrounding and characterizes it (see figure 3.6).

120| 20 {200 1101
a) 10 | 80 |220|—| O 1 |[—— ’10101001’
10 | 20 |220 oo 1

120 20 |200(120| 40 | 80 |230|210|180| 60

b) 10180 | 70 (120| 80 (220(210|190|150] 80

10 [20 {220 10 | 20 (250(200|180|120| 20

’101000011 01111010 10000100 10011001
00100010 01010100 11010100 11010100’

Figure 3.6: a) Census transform for a single pixel. b) Transform applied to
a 3 - 10 pixel block.

To apply the Census correspondence function on two 3 - 10 pixel blocks,
both blocks are first Census transformed: The Census transform is separately
applied to the eight pixels in the center of the block, so eight bit strings are
generated. Combined, a 64 bit string characterizes each pixel block. The
Hamming distance of these two bit strings defines the similarity of two blocks,
that is, the number of equal bits.

It is important to see that the Census function works on relative intensity
values as opposed to the LSQ function that takes absolute values. This makes
it insensitive to the overall image brightness. The advantage is that the
Census function manages to match image regions that are poor in features.
A drawback is that the influence of edges and strong contures is attenuated.

Chapter 4

Architecture

4.1 Top Level Architecture

This section introduces the IO interface of the chip and gives an idea of the
general data-flow. An overview of the interface signals is shown in table 4.1.

There are four types of signals, namely data, protocol, configuration and
testability signals.

The data interface consists of the input for the left and the right image
and the output of the disparity map. Since the whole architecture works
data-flow oriented, an input image is processed pixel by pixel. An input
pixel is encoded as an eight bit gray scale value and the output is a five bit
value representing one pixel of the disparity map.

The control signals FrameSync, LineSync and PixelSync are used to deter-
mine the beginning of a new frame, a new line and a new pixel, respectively.
Because of the fixed image width of 256 pixels, the LineSync signal is redun-
dant and therefore exists only at the output. It simplifies the interpretation
of the disparity map. The FrameSync and PixelSync signals are passed along
with the actual data through the whole architecture. This protocol makes
the architecture independent of the overall latency.

The configuration of the Merger module and the Output filter module is
done by several configuration signals. A change of these signals immediately
affects the configuration of the modules.

Finally, there is a group of signals which ensures the testability of the
design. There is a built-in self test (BIST) for all the RAMs on the chip
which can be configured using the TestMode signal (i.e. a test mode, an init
mode or a bypass option can be chosen). Finally, there is the interface to the
scan path, which consists of the input and the output to the path as well as
an enable signal.

29 Architecture
Top
In Out
Function Port ‘ Width | Port ‘ Width
Data LeftPixelln 8 bit PixelOut 5 bit
RightPixelln 8 bit
Protocol PixelSync 1 bit | PixelSync |1 bit
LineSync 1 bit
FrameSync 1 bit | FrameSync | 1 bit
Configuration | SingleFunction 1 bit
MergePrio 1 bit
FunctionPrio 1 bit
OcclDetectLSQ 1 bit
OcclDetectCensus | 1 bit
OcclDetectMerged | 1 bit
TolLSQ 2 bit
TolCensus 2 bit
TolMerged 2 bit
FilterMode 2 bit
Test TestMode 2 bit RamError | 6 bit
ScanEn 1 bit
Scanln 1 bit ScanOut 1 bit

Table 4.1: 1O Interface of the chip

4.2 Module Level Architecture

4.2 Module Level Architecture

The module level architecture principally reflects the data-flow of the algo-
rithm as it is described in chapter 3. There are six main modules: the Input
Buffer, the LSQ, Census, Displacement and Merger Module and the Output

Filter (see figure 4.1).

Left image E— Right image
| L R
: A A
: Input Buffer
H LR RL LR RL
' LsQ Census
, Modules Modules
; (2x) (2x)
H LR RL LR RL

! Displacement

Module

: LR

RL

! Merge Module

4

! Output Filter

Image out

Figure 4.1: There are six main modules

The Input Buffer reorders and buffers the image data for block searching.
It passes reference an scan blocks to the LSQ and the Census Modules,
which find the best displacement according to their correspondence functions.
This displacement defines the input to the Displacement Module which does
the perspective placement and the selection of the best match for a certain
position. The Merger Module then merges the four intermediate disparity
maps into a single map which is finally filtered by the Output Filter.

24 Architecture

Since all calculations are done in a right-to-left (RL case) as well as a left-
to-right manner (LR case), the Census and the LSQ module are instantiated
twice.

There were mainly two choices for a control path implementation. One
was a centralized control unit which would coordinate the image data flow
through the modules. However, this was no suitable arrangement because
there is a steady data-flow with regularly re-occurring operations. Since the
latencies of all modules would have to be known to the controlling unit, this
would have introduced additional complexity to the entire design. Therefore,
a decentralized design was implemented. There is an intermodule protocol
which is the same for all blocks.

The intermodule protocol relies on two control signals: the FrameSync
and the PizelSync signal. These signals are passed along with the correspond-
ing data. Every time a module has finished processing a pixel, it informs the
succeeding module about the update of its output buffer by setting the “Pix-
elSync” signal for one clock cycle (see figure 4.2). Besides the “PixelSync”,
the “FrameSync” signal is set if the processed pixel was the first one of an
image. Thus, if new functionality is added to a module that (possibly) affects
its latency, no changes need to be made to the other modules. Furthermore,
there is a “LineSync” signal generated at the output which indicates the
beginning of a new line.

SR e U e U W o W U e U

/]
I

/)
PixelSync /_\ // /_\
\

FrameSync

I
/]

I ><
/]

I

Data

Figure 4.2: The intermodule protocol relies on the FrameSync and PixelSync
control signals

Because of the searching region used for block searching, a stereo vision
algorithm produces some image border regions where no valid output data
can be defined. There were two choices on how to deal with those regions:
The modules could be designed in a way that they only pass on the valid
part of the image data. This would lead to image data that is reduced in

4.3 Input Buffer Module 25

width at almost every module. However, it was decided to process the image
data continuously, including the border regions, and to accept the invalid
data they contain. Using the LineSync signal, these borders can easily be
identified and cut at the output, please find further details in the data sheet.

4.3 Input Buffer Module

Input Buffer Module
In Out
Function | Port | Width | Port | Width
Data LeftPixelln 8 bit | LeftRefBlock 3-10 -8 = 240 bit
LeftScanBlock | 3-10 -8 = 240 bit
RightPixelln | 8 bit | RightRefBlock | 3-10-8 = 240 bit
RightScanBlock | 3 - 10 - 8 = 240 bit
DispCount 5 bit
Protocol | PixelSync 1 bit | PixelSync 1 bit
FrameSync 1 bit | FrameSync 1 bit
Test TestMode 2 bit | RamError 1 bit

Table 4.2: Input Buffer Module ports

4.3.1 Task of the Input Buffer

The Input Buffer module takes control of the incoming image data and rear-
ranges it in a way that the design can perform the stereo matching functions
efficiently. It reads the image data from the input interface and buffers a to-
tal of some more than two lines per input image. From this buffer it provides
the succeeding modules with four pixel blocks: two reference and two scan
blocks. Pairwise, they are the starting points of the two separate data-flows

RL and LR. For each pixel that arrives at the input interface the module
performs a complete pizel cycle: While the reference blocks remain static
the two scan blocks are rearranged 25 times so that they are issued once for
each displacement value. The current displacement value is passed on to the
correspondence function modules.

26 Architecture

4.3.2 Architecture of the Input Buffer

There are three memory components within the architecture: A 256 x 32
bit RAM block serves as a buffer for two full lines per input image. It is
organized as a circular buffer with a pointer to the current working position.
The 256 entries of this RAM determine the fixed image width of the entire
design. The second memory are two shift register banks of (34-3)-8 bit. They
represent the data that is required for one entire pixel cycle: Blocks of 10
pixels in width are displaced 24 times. This yields a shift register width of 34
pixels. The content of this register bank is loaded once before the pixel cycle
starts. No new data is added during the cycle. The third storage are two
blocks of (3-10) - 8 bit. They contain the reference blocks that remain static
during the pixel cycle. The scan blocks are tapped from the shift register
bank and are therefore implemented without additional memory.

left image data right image data

A
search area > RAM: 2*2 complete
shift registers image lines
(34*3 bytes) < (256*32bit)
left reference right reference
block registers block registers
(3*10 bytes) (3*10 bytes)
A
left scan v right scan
block block

Figure 4.3: Input buffer architecture

A state machine controls the memory components during one pixel cycle:
First, the shift registers contain 33 columns of valid data, so only one column
needs to be reloaded with new data. This column contains three pixels,
whereof one has been processed on three different lines and has reached the
end of its lifetime. The other two values are newer and are written back to
the RAM for further processing in the next image line. To renew the column,
the newly arrived pixel is inserted along with two values that are taken from
the circular RAM.

Second, the registers are shifted 24 times, resulting in 25 different dis-
placements. During this process the succeeding correpondence function mod-
ules evaluate the reference and scan blocks and memorize the best matching

4.4 LSQ Module 27

positions.

Since the shift registers are 34 positions wide but only 24 shift operations
have taken place, a hopping operation is performed: all cells are shifted
several positions at once so that the registers are ready to get reloaded.

The current displacement value is output to the correspondence function
modules. By convention, a displacement value of zero causes these modules
to reset their internal values and to pass on the current results in the data-

flow.
[wait]
PixelSync =1
do hopping operation load new pixel
to prepare register for load reference blocks
new data
counter N /

shift registers
and increment

displacement counter
A

counter < 24

Figure 4.4: Input buffer FSM (simplified)

Over all, the lifetime of a single pixel is made up of a first pixel cycle
in the register bank, afterwards storage in RAM, again a pixel cycle in the
registers, a second storage in RAM and finally a last pixel cycle in registers.
This mechanism allows the algorithm to work on three lines at a time while
only storing a little bit more than two image lines on-chip.

4.4 LSQ Module

4.4.1 Task of the LSQ Module

The LSQ Module basically calculates the best match for every input pixel,
i.e the reference block associated to it.

28 Architecture

LSQ Module
In Out
Function | Port ‘ Width Port ‘ Width
Data RefBlock 3-10 -8 = 240 bit | Quality 19 bit
ScanBlock | 3-10-8 = 240 bit
DispCount 5 bit Displacement | 5 bit
Protocol | PixelSync 1 bit PixelSync 1 bit
FrameSync 1 bit FrameSync 1 bit

Table 4.3: LSQ Module ports

During every pixel cycle, the LSQ Module gets a static reference block as
well as the 25 associated scan blocks and the corresponding displacements.
From these data, it identifies the best match according to the LSQ corre-
spondence function. A match consists of a displacement value and a quality
value, which rates the match.

At the end of every pixel cycle, the best match is presented at the output.

4.4.2 Architecture of the LSQ Module

During every clock cycle, the LSQ Module compares a reference to a scan
block. To do so, there is a combinational part which squares all the differences
of two corresponding pixel intensities and then adds up the results.

To search the best match, the current match is successively compared
to a temporary best match, which is replaced if the current match is better.
The temporary best match is reset (i.e. the current match is considered to be
the best match) whenever the displacement counter at the input is zero, and
the temporary best match is written out as soon as the PixelReady signal is
set (i.e. all 25 displacements corresponding to one pixel are processed). The
procedure of finding the best match is illustrated in figure 4.5.

Since the combinational part of the LSQ Module turned out to be timing
critical as well as area intensive, special attention was paid to its design.
Taking into account the huge addition tree which is necessary to sum up all
the “squared differences”, a carry save architecture was introduced. This was
done as consequent as possible, thus, also the square units work in a carry
save manner and provide partial results to the succeeding adder tree.

The improvement resulting by this architecture compared to a straight
forward implementation using usual multipliers for the square operation and
ripple carry adders for the adder tree is shown in table 4.4. The straight
forward solution is pipelined, since otherwise the longest path would be un-

4.4 LSQ Module

tempBestMatch = currentMatch

[out = tempBestMatch [«

(if currentMatch better than

displacement > 24

tempBestMatch then

tempBestMatch = currentMatch

displacement <= 24
Figure 4.5: Procedure of finding the best match
reasonably long. The carry save approach does not require a pipeline, since

the operations are carried out much faster, which keeps the longest path
short enough.

Two LSQ architectures compared

Topic ‘ LSQ A ‘ LSQ B

area combinational 0.477 mm? 0.309 mm?
noncombinational 0.048 mm? 0.011 mm?
total 0.525 mm? 0.320 mm?

input data | pixel width 8 bit 8 bit
number of pixels 2:3-10=60 2:3-10=060

output data | width total sum 21 bit 21 bit
width output quality 21 bit 19 bit

pipe lined yes no

flip flops 228 49

adder type DWO01 DWO02 carry save

longest path ‘ 11ns clock 10.57 ns 10.44 ns

Table 4.4: LSQ A is the stright forward solution using ripple carry adders,
LSQ B is the advanced version using a carry save architecture.

The quality issued by the LSQ Module is basically the result of the com-
binational calculation explained above. However, it was considered to be
unreasonable to keep the result in its full size, which is 21 bits, since this
is overly precise and affects the memory sizes of the succeeding modules.
Therefore, the result was cut down to 19 bits, which proved to be precise
enough.

30 Architecture

4.5 Census Module

Census Module
In Out
Function | Port | Width Port, | Width
Data RefBlock 3-10-8 = 240 bit | Quality 7 bit
ScanBlock | 3-10-8 = 240 bit
DispCount 5 bit Displacement | 5 bit
Protocol | PixelSync 1 bit PixelSync 1 bit
FrameSync 1 bit FrameSync 1 bit

Table 4.5: Census Module ports

4.5.1 Task of the Census Module

Like the LSQ Module, the Census Module finds the best matching scan block
to each incoming reference block, and writes the quality and the displacement
of that match to the output. However, the Census Module uses the Census
rather than the LSQ correspondence function to compare the blocks.

4.5.2 Architecture of the Census Module

The Architecture of the Census Module is principally the same as the ar-
chitecture of the LSQ Module (see section 4.4). They only differ in the
combinational part that calculates the correspondence value.

To calculate the result of the Census correspondence function, the refer-
ence as well as the scan block need to be Census transformed first. A block
of 3 times 10 pixels yields an output of eight Census transformed pixels, that
is 64 bits (refer to section 3.2.2 for details). The eight Census transformed
pixels are calculated separately by eight ’Census Transform’ instances.

The two 64 bit wide bit strings representing the reference and the scan
block, respectively, are then compared by calculating the Hamming distance
(i.e. by counting the number of equal bits).

4.6 Displacement Module 31

Displacement Module

In Out
Function | Port ‘ Width | Port ‘ Width
Data LeftCensusDisplacement 5 bit | LeftCensusPixel 5 bit
LeftCensusQuality 7 bit 5 bit
RightCensusDisplacement | 5 bit | RightCensusPixel | 5 bit
RightCensusQuality 7 bit 5 bit
Left LSQDisplacement 5 bit | LeftLSQPixel 5 bit
Left LSQQuality 19 bit 5 bit
RightLSQDisplacement 5 bit | RightLSQPixel 5 bit
RightLSQQuality 19 bit 5 bit
Protocol | PixelSync 1 bit | PixelSync 1 bit
FrameSync 1 bit | FrameSync 1 bit
Test TestMode 2 bit | RamError 4 bit

Table 4.6: Displacement Module ports

4.6 Displacement Module

4.6.1 Task of the Displacement Module

At this stage in the design there are four parallel data-paths, namely the
LR LSQ, LR Census, RL LSQ and RL Census results coming from the four
correspondence function modules. The displacement module now performs a
quality-based pre-filtering and does the perspective mapping on each of the
four data-paths separately. Perspective mapping results in variable latencies
for the matches. It is possible that there will be no match at all for a certain
output image position. However, there is an output code (“no match”=0)
for this situation that allows a constant data-flow out of the module. The
output is made up of four displacement values that all correspond to the
same pixel position in the output image. The Merger module takes them for
a further selection process.

4.6.2 Architecture of the Displacement Module

A submodule called Displacement Buffer is defined and instantiated four
times within the displacement module. It mainly contains a ring-buffer of
13 elements that allows temporary storage for the reordering and sorting of
matches. A pointer into the ring-buffer is incremented at each pixel cycle
and points to the current oldest match which is the output of the subunit.

32 Architecture

Each result that is input to a displacement buffer contains a displacement
value and a matching quality. Perspective matching takes place with the
help of the displacement value. The unit calculates a buffer position relative
to the current pointer where the result is to be stored along with its quality
value. If there is already a match stored at this buffer position (the stored
displacement value at this position is greater than zero), the one with the
better quality value is chosen. If a zero propagates to the Displacement
Buffer output without being overwritten by any valid match, no match is set
for that pixel.

The four data-flows are treated separately. Each has its own displacement
buffer. The right-to-left (RL) matching yields results that belong into the
left half of the search area due to the perspective matching. The left-to-
right (LR) matching on the other hand, yields results that fall into the right
half. So, in order to get results that correspond to the same position in the
output image, the LR results must be delayed by an additional latency of 12
pixel cycles after the Displacement Buffer, as depicted in figure 4.6. The two
buffers that process the RL LSQ and RL Census matches have their current
result in the ring-buffer sent to the modules output immediately. In contrast,
the LR LSQ and LR Census matches are delayed with an additional latency
since they refer to an output image position further to the left.

search area of left image ref ref search area of right image
I s— |
scan min scan max scan max scan min
T""""""""""""""”*A [LLLLLLLLLLLL)
shift shift
Buff| address area of Buffoutl [[TTTTTTTTTIBuff| address area of
out! RL displacement buffer afterlatency |atency ©ut! LR displacement buffer

ref or scan block of RL, ref or scan block of LR,
results belong to left half of search results belong to right half of search
area, due to perspective matching area, due to perspective matching

Figure 4.6: The LR matches are delayed with an additional latency

4.7 Merger Module 33

Merger Module

In Out
Function Port ‘ Width | Port ‘ Width
Data LeftCensusPixel 5 bit | PixelOut | 5 bit
RightCensusPixel | 5 bit
Left LSQPixel 5 bit
RightLSQPixel 5 bit
Configuration | SingleFunction 1 bit
MergePrio 1 bit
FunctionPrio 1 bit

OcclDetectLSQ 1 bit
OcclDetectCensus | 1 bit
OcclDetectMerged | 1 bit

TolLLSQ 2 bit
TolCensus 2 bit
TolMerged 2 bit

Table 4.7: Merger Module ports

4.7 Merger Module

4.7.1 Task of the Merger Module

The Merger module has two tasks: First it performs the occlusion detection
as described in section 2.3.2. Second it allows to parameterize the output
image to a certain degree, depending on the application of the chip. These
functions are performed by suitably combining the four data-flows into one
final data-flow.

Occlusion detection is achieved by combining the RL and LR data-flows.

The unit can compare results of the two flows and perform a tolerant
combination where similar results are accepted and differing ones are rejected.
This, of course, leads to areas in the output image that do not contain any
displacement information and therefore remain black.

This module further performs a parameterized merge on the LSQ and
Census data-flows to take advantage of the specific characteristics of the two
types of correspondence functions.

Literature in general pledges for sparse disparity maps where only stereo
results of a sufficient certainty appear. Areas of uncertain depth estimates are
preferably left black (unknown). This is a strong requirement for technical
applications. However, for the human eye a dense disparity map that also

34 Architecture

includes lesser certain matches is nicer to look at. To account for both
applications, the merger unit implements nine parameters (see table 4.8).

4.7.2 Architecture of the Merger Module

The Merger module is a purely combinational unit. It implements two basic
functionalities: selective overwrite and tolerant combination.

Selective overwrite is a way of combining two data-flows from two differ-
ent correspondence function types. A priority parameter determines whether
the LSQ or Census function should be given priority in the case that both
functions claim a match. The single function bit allows to choose one func-
tion while ignoring the results from the other. It is important to note that
the quality values of the two different correspondence functions cannot be
directly compared, that is why the priority solution was implemented.

Tolerant combination refers to the occlusion detection mechanism. It
combines a LR and a RL data-flow into one single data-flow. Displacement
values are compared pair-wise. If their difference is not bigger than a given
tolerance, the mean value of the two is accepted. Otherwise the values are
rejected and “no match” is returned.

4.8 Output Filter Module

4.8.1 Task of the Output Filter Module

The stereo algorithm produces a small number of false matches if certain
image phenomena occur like partial occlusion, low texture, reflections or
transparent surfaces. The output filter slightly enhances the output image.
The filter operations can be classified as “nonlinear noise reduction”. There
are four filter modes:

Bypass mode: The output filter module does not alter pixel data but
introduces the same latency as all other filter modes do.

Pixel filter mode: This is an empirical filter. It was observed that output
images sometimes have several pixels in a row that were false matches. It
is hard to detect an entire block of pixels as false. The detection therefore
works in vertical direction since false matches are unlikely to appear at the
same position on different lines. Three pixels are evaluated: The center pixel

4.8 Output Filter Module 35

Merger Module configuration parameters
parameter ‘ explanation

SingleFunction 0: SingleFunction mode is off, both functions are active
1: only the results of the correspondence function determined
by the FunctionPrio is considered

MergePrio determines order of merger functionalities
0: Tolerant combination before selective overwrite,
1: Selective overwrite before tolerant combination

FunctionPrio priority of correspondence functions
0: LSQ
1: Census

OcclDetectLSQ enables occlusion detection on LSQ results
0: enabled

1: results are combined without tolerant combination;
even single matches are accepted.

OcclDetectCensus | 0: occlusion detection on Census results is enabled
1: results are combined without tolerant combination;
even single matches are accepted.

OcclDetectMerged | 0: if MergePrio is 1, occlusion detection on the results
of the selective overwrite mechanism is enabled.

1: results are combined without tolerant combination;
even single matches are accepted.

TolLSQ tolerance value(0..3) of the LSQ tolerant combination
TolCensus tolerance value (0..3) of the Census tolerant combination
TolCombined tolerance value (0..3) of the combination of the

selective overwrite mechanism

Table 4.8: Merger Module configuration parameters

36 Architecture

Output Filter Module

In Out
Function Port ‘ Width | Port ‘ Width
Data Pixelln 5 bit | PixelOut 5 bit
Protocol PixelSync 1 bit | PixelSync 1 bit

LineSync 1 bit
FrameSync | 1 bit | FrameSync | 1 bit
Configuration | FilterMode | 2 bit
Test TestMode 2 bit | RamError 1 bit

Table 4.9: Output Filter Module ports

which is subject to filtering and the pixels right above and beneath this center
pixel. The top and bottom pixels are interpreted as an intensity range. Is
the center pixel’s intensity out of that range, it is assigned the mean value
of the top and bottom pixel. Is it within that range it is accepted without
being altered.

Sort filter mode: This operation is a simplified median filter. It inspects
the same three pixels as the pixel filter mode. The three pixel values are
sorted and the middle one is picked as the filter result. Local extrema and
obviously false matches are left out elegantly.

Median filter mode: In this mode the module works as a full median
filter as described in subsection 2.3.3. Nine pixels are inspected: The center
plus the eight surrounding pixels. All nine values are sorted and the median
is picked. The effect is, that the output images get some smoother contours
and that false matches are quite effectively removed from a not-too-noisy
image region. The Median filter mode is implemented by a sorting network
of 19 nodes (see figure 4.7).

4.8.2 Architecture of the Output Filter

Working in vertical direction requires that the output filter stores two full
lines of image data. Combined with the newly arrived data it is possible to in-
spect three lines simultaneously. The required on-chip RAM is a 256 x 10 bit
type since each pixel is represented by five bits only. The memory is orga-
nized as a ring-buffer. Special attention had to be paid to the latency of
the FrameSync and LineSync signals since the latency of this module is 257

4.8 Output Filter Module 37

|0||1||2||3||4|y||6||7||8|
0 H1 E H4 E H7
HO L3 L6 6
H3 "
LO 2N Ho ET > H5 L8
H8
L2 4
9 3 11
HO L13 L11
m m H13 m
H14
H10 E L15 L12
6
L16 Arg1 Arg2

= H16 \./
H17 .
ﬁm smaller (greater

18

Figure 4.7: Median Filter sorting network

38 Architecture

complete pixel cycles.

Appendix A
Reference Model

Prior to the project a JAVA environment was set up for the algorithm de-
velopment and refinement. It was the basis for a software that served as
a reference model for simulation and verification purposes. This chapter
describes the environment and its usage.

A.1 Environment for Algorithm Development

The algorithm selection as described in section 3.1.2 was performed with a
JAVA environment. It was designed in a modular way where many different
image processing functions were set up as filters. These filters included func-
tions such as RGB-to-gray conversion, edge detect, blurring, resizing, Census
transform, different block matching techniques, color transformation, mir-
roring etc. A universal Image class represented the data that the software
worked on. The filters could be combined freely to form sequences of im-
age processing functions. This architecture allowed to check out ideas about
algorithms quickly without having to alter existing code.

A.2 Bit-true Reference Model

When the algorithm choice was finally made, the environment served as a
basis to create a bit-true reference model for the design, named Reference-
Model.java. Tt is implemented as a parameterized command line tool. The
model includes all input parameters that the designs implements, so that all
combinations of service modes could be tested. The tool is able to generate
ASCII stimuli files and expected response files. An optional graphical out-
put shows resulting images at different stages in the image data flow of the
design.

40 Reference Model

The second tool ShowResponselmage.java transforms simulation reports
back to image formats that can be viewed on the screen. An optional dif-
ference function highlights pixels in the simulation report that are different
from the expected response.

Both tools are compiled with javac-1.4.1 due to this versions graphical
capabilities.

A.3 Usage of the Tools

For the command line parameters to ReferenceModel.java, see table A.1.

ReferenceModel.java
Parameter ‘ Value ‘ Purpose ‘ Default
-il filename left input image
-ir filename right input image
-OutputImageName filename final output image
-ExpRespFileName filename expected response
file (ASCII vectors)
-StimuliFileName filename stimuli file for Modelsim
-CheckFrameSwitch 0=no whether to check two no
1=yes frames with switchover
-ToleranceLSQ 0..3 LSQ tolerance value 2
of merger unit
-ToleranceCensus 0..3 Census tolerance value 2
of merger unit
-ToleranceMerged 0..3 tolerance of overwritten 2
L-R images
-FunctionPrio 0 = Census, correspondence 0
1 =LSQ function priority
-SingleFunction O=false single correspondence 0
1=true function option
-MergePrio O=tolerant combination before sel. overwr. 0
1=selective overwrite before tol. comb.
-OcclDetectLSQ O0=on single match option on
1=off of LSQ correspondence
function
-OcclDetectCensus O0=on single match option on
1=off of Census correspondence
function
-OcclDetectMerged O0=on single match option of on

A.3 Usage of the Tools 41
ReferenceModel.java
Parameter | Value | Purpose | Default
1=off combined L-R images
-RamTestMode 0=No test RAM test mode at 1
1=init with zeroes | chip reset
2=chessboard
3=full BIST
-OutputFilterMode 0=No filter mode of the 0
1=heuristic filter | output filter unit
2=sort filter
3=median filter
-WriteVectorFile 0=no, 1=yes whether stimuli and 1
expected response files
are to printed out
-Displaylmages 0=no, 1=yes whether a graphical 0
overview of the
images is requested
-GeneratelnputImages | 0=no, 1=yes generates synthetic test 0
images that enable a
test of all possible
displacements
Table A.1: Command line parameters to “Reference-
Model.java”

For the command line parameters to ‘ShowResponseImage.java’, see table

A2

ShowResponselmage.java

Parameter ‘ Value Purpose ‘ Default
-expresp filename expected response
-simrept filename simulation report
-out filename output file name
-mode O=create difference image operation mode 0
1=create simulation report image
2=create expected response file name

Table A.2: Command line parameters to “ShowResponselmage.java”

42

Reference Model

Appendix B

Glossary

Census correspondence function is a correspondence function which
works on Census transformed pixel data (see section 3.2.2). The resulting bi-
nary strings of two transformed pixel blocks are compared by their Hamming
distance.

Correspondence function is a function that calculates a value that rep-
resents a measure of similarity between two pixel blocks, i.e. a reference
block and a scan block.

Dense disparity map is a disparity map that contains a disparity value
for almost every map position. A dense disparity map can be achieved by
accepting stereo matching results of a lesser quality and by interpolation.
The human eye prefers dense disparity maps for visualization of a scene.

Depth map is an array of values that represent a spacial distance to every
point of a scene. It can be calculated from a disparity map.

Disparity map is an array of values that represent a perspective displace-
ment for every point of a stereo scene. For objects that are close to the
camera setup, higher displacement values result.

Displacement refers to a horizontal shift in position and is a distance
measure that is usually expressed in pixel units.

Hamming distance is a similarity measure for two binary strings of the
same length. The Hamming distance is defined as the number of correspond-

44 Glossary

ing bits that are unequal. Usually an XOR operation is performed, so that
the ones of the XOR result can be counted.

LSQ correspondence function is a correspondence function that builds
the sum of squares of the pixel-wise differences in intensity of all pixels in a
pixel block. Since higher values represents a smaller similarity of two pixel
blocks, the least value is the one that represents the best match. The term
LSQ (least square) refers to this fact.

Occlusion is a phenomenon that appears in stereo vision due to the fact
that a scene is observed from two different viewpoints. Objects in space can
hide each other so that the cameras do not see the exact same scene.

Pixel cycle is the period between two pixels measured in clock cycles. The
minimum pixel cycle is 28 clock cycles. The maximum pixel rate is equal to
the maximum clock rate divided by the minimum pixel cycle, the maximum
frame rate can be calculated by dividing the maximum pixel rate by the
amount of pixels per frame.

Reference block is a pixel block that represents the vicinity of a single
pixel in an image. This block is kept statically at its position in one image
while the corresponding scan block is increasingly displaced in the other
image.

RL-LR consistency check is an approach to occlusion detection. Hereby
a stereo algorithm is applied once from the right into the left image and a
second time vice-versa. If only results are accepted that are brought forward
by both runs, occluded areas are automatically skipped.

Scan block is a pixel block that represents the vicinity of a single pixel
in an image. The scan block is shifted over an image in order to find a best
match for a corresponding reference block.

Scan line is a horizontal line of pixels within a stereo scene. Since hor-
izontally separated cameras yield horizontally displaced image features, it
suffices theoretically to search correspondences on one single scan line.

45

Signal-to-noise ratio is in computer vision often defined as
SNR = 10log,,(c®>/MSE)

where o denotes the variance of the original image and M S E the mean square
error. The mean square error is (I — I')? where I and I’ are the original and
the noisy image, respectively[10].

Sparse disparity map is a disparity map that contains only few disparity
values. Many map positions are left blank. A sparse disparity map is achieved
by accepting only stereo matches of a high level of certainty.

46

Glossary

Appendix C

Gallery

All pictures are calculated with the following settings:

SingleFunction 0 (off)

MergePrio 0: Tolerant combination first

FunctionPrio 1: Census

OcclDetectLSQ 0: enabled

OcclDetectCensus | 0: enabled

TolLSQ 1 (tolerance value)
TolCensus 1 (tolerance value)
FilterMode 3 = Median Filter

left original

48

Gallery

median filtered output

49

left original

Gallery

50

after merger module

after output filter module

Ll]
TS

51

left original

right original

92

Gallery

after merger module

o5

after output filter module

Appendix D

Data Sheet of the “Real Time
Stereo Vision Chip”

D.1 Description

The SOMO02w10 is a configurable real time stereo vision module. It calculates
a disparity map stream with 25 different depth values for two input streams
produced by external image sources. The input images are 8 bit gray-scale
encoded, 256 pixels wide and unlimited in height. For a typical image format
of 256x192 a frame rate of 72fps is achieved.

A simple I/O protocol allows the implementation of interfaces to com-
mercial CCD/CMOS cameras and LCD displays or other processing units.

The stereo algorithm is configurable to make the chip applicable in dif-
ferent environments.

D.2 Features

e area-based stereo vision algorithm

e a combination of two correspondence functions

e encorringly gnatonomy for snurfectable smachomility

e Frame Rate: 72 @ Max Clock (100MHz, image size 256x192)

Frame width: 256

Frame height: user defined

Pixel: 8 bit gray-scale

54 Data Sheet of the “Real Time Stereo Vision Chip”

e Depth Resolution: 25 depth values + “no match”

D.3 Application

The Application of the SOM02w10 ranges from collision detection and route
planning for autonomous vehicules to contact-free object recognition in in-
dustrial applications and security applications.

D.4 Functional Block Diagram

The internal architecture is made up of six units. An input buffer stores and
reorders the incoming data for stereoptic matching. Two different correspon-
dence functions (census, LSQ) determine the similarity of image regions by
different criteria. A displacement buffer maps these intermediate results per-
spectively. Within a configurable merger unit an occlusion detection is done
and all results are merged into one final image stream. A configurable output
filter unit allows postfiltering of the results. See figure D.1 for a schematic.

D.5 Typical System Architecture

A setup of two parallel image sources is required. Typically, a pair of CCD
or CMOS image sensors or other digital camera devices are fixed on a mount.
They need to be aligned strictly horizontal so that corresponding image rows
overlap in space. This is done best by a horizontal test image pattern.

A controller unit serves as the interface between the image sources, the
data processing unit (LCD) and the SOM02w10. For calibration purposes it
is recommended that the controller implements a bypass mode to view the
raw images from the image sources. See figure D.2 for an illustration.

D.6 Specifications

See table D.1.

D.7 Interface

D.7.1 Protocol Signals

There are three protocol signals: PizelSync, LineSync and FrameSync.

D.7 Interface

95
Left image — Right image
L R
y y
Input Buffer
LR RL LR RL
LsQ Census
Modules Modules
(2x) (2x)
LR RL LR RL
Displacement
Module
LR RL
Merge Module
1 4 1
E Output Filter !
Image out
Figure D.1: Functional Block Diagram

‘ Specifications
Supply Voltage 3.3V 0.3V
Maximum Clock Frequency | 100 MHz

Frame Rate

72 fps @ (100MHz, 28 cyc/pix, 256 - 192 res)

Minimum Pixel Cycle

28 clock cycles

Latency

543 pixel cycles

Depth Resolution

25 depth values + “no match”

Configurability 10 parameters plus free choice of image height
Package 84-pin JCLCC
Process UMC L250 5M1P

Table D.1: Specifications

56 Data Sheet of the “Real Time Stereo Vision Chip”

CCD/CMQOS Cam
right =
SOMO02w10
1 1 LCD display
Controller

CCD/CMOS Cam I

left

Figure D.2: Typical setup with two cameras, a controller, the SOM02w10
and a LSQ display

PixelSync: This signal anounces a new pixel on the port. Any transition at
the pixel port will affect a transition on the PixelSync signal. The PixelSync
must stay high for one cycle and must be zero for at least the following 27
cycles. This period is called pizel cycle. There is no upper limit of the pixel
cycle duration, but it must not be shorter than 28 clock cycles. The pixel
cycle has not to be constant. There is a PixelSync signal at the input and
the output of the chip.

LineSync: The current pixel is the first pixel of a line, if this signal is high.
A transition on the PixelSync is mandatory for a transition on the LinceSync.
This signal exists only at the output. The latency of the LineSync is exactly
256 pixel cycles.

FrameSync: The current pixel is the first pixel of a new frame, if this
signal is high. A transition on the FrameSync affects a transition on the
PixelSync (and on the LineSync if available). It determines also the height
of the input and output image. The recomended height is 192 pixels, but
lower and higher values are also possible. There is a FrameSync signal at the
input and the output of the chip.

D.7 Interface

S7

D.7.2 Configuration Signals

parameter

Merger Module configuration parameters

‘ explanation

SingleFunction

0: SingleFunction mode is off, both functions are active
1: only the results of the correspondence function determined
by the FunctionPrio is considered

MergePrio

determines order of merger functionalities
0: Tolerant combination before selective overwrite,
1. Selective overwrite before tolerant combination

FunctionPrio

priority of correspondence functions
0: LSQ
1: Census

OcclDetectLSQ

enables occlusion detection on LSQ results

0: enabled

1: results are combined without tolerant combination;
even single matches are accepted.

OcclDetectCensus

0: occlusion detection on Census results is enabled
1: results are combined without tolerant combination;
even single matches are accepted.

OcclDetectMerged

0: if MergePrio is 1, occlusion detection on the results
of the selective overwrite mechanism is enabled.

1: results are combined without tolerant combination;
even single matches are accepted.

TolL.SQ

tolerance value(0..3) of the LSQ tolerant combination

TolCensus

tolerance value (0..3) of the Census tolerant combination

TolCombined

tolerance value (0..3) of the combination of the
selective overwrite mechanism

parameter

Output Filter Module configuration parameters

‘ explanation

FilterMode

0 = Bypass

1 = heuristic Pixel Filter
2 = Sort Filter

3 = Median Filter

D.7.3 Disparity Map

The outcoming data is a disparity map, i.e. the value of a pixel is the
value of the displacement of two corresponding objcets in the left and the
right picture. The displacement is inversly proportional to the distance of

58 Data Sheet of the “Real Time Stereo Vision Chip”

the object to the virtual viewpoint of the ouput picture, which lies excatly
in the middle of the two cameras. The corresponding depth to a certain
displacement of an object can be calculated by the displacement of the two
cameras times the focus divided by the displacement of the object.

diSpeameras - focus

dispob ject

depthobject =

D.7.4 TImage Borders

The continuous dataflow architecture of the SOM02w10 causes valid and
invalid image data to be mixed. The affected image regions are the borders
to the left and right of the output image. Interpreting the output images, the
first and last 13 pixels of a line must be ignored. A stereo vision algorithm
can only produce sensible results within regions where two images exist, e.g.
where the two input images overlap.

D.7.5 Timing

Chip

FF2
sC

CLK
CLK ﬂ CLK m
t od FFNd’FH dep,hold ‘t dep,su !
A — ; d
Fra QXX pout __ K000 |
t cd.A\ Xpd,A t cd,D\\‘ \cho
DIN i XXX FF3.D L OXOO00KX 3
SN . s |
}t arr,min ' }t hold,FF3 ' H
AR, ‘]
t arr,max t su,FF3

t arrmin = 1.8 ns t dep,hold = 4.0 ns
t armax = 6.0 NS t dep,su =

D.8 84-Pin JLCC Package

99

D.8 84-Pin JLCC Package

See figure D.3 for the pin layout. Please find in figure D.4 a technical drawing

of the 84-Pin JLCC package.

32 12
<llallaellallallallal|lal|la :‘ |:‘ |:‘ ~AEE-ARE-NEg-NER-NEN-NER-REE-REES
) === |=|=||=]|=||=||x|0||ln = = = = S SS] |5 |
wl|o|=]|[N]|e|sl|lal|lo||N||al[o]||o]||o|=]|N]||d]|s|l|lu||o]|N]|a
33 vdd vss
Function Port Vector Direction Pad Pin #
n.c. n.c.
Data LeftPixelln 7 downto 0 In dil# 25..31
n.c. RightPixelln 7 downto 0 In dir# 13..19 n.c.
RightPixelOut 5 downto 0 Out do# 69..73
. Protocol PixelSync In pips 38
IE FrameSync In pifs 37 E
I:- PixelSync Out pops 66 :I
PIps LineSync Out pols 67 ttm0
,7“ C. FrameSync Out pofs 68 —ln' c.
n.c. Configuration SingleFunction In csf 77 n.c.
MergePrio In cmp 76
tse FunctionPrio In cfp 78 n.c.
OcclDetectLSQ In codl 79
Vss OcclDetectCensus In codc 80 vdd
OcclDetecMerged In codm 81
vdd TolLSQ 1 downto 0 In cti# 55..56 vdd
TolCensus 1 downto 0 In cte# 57..58
m TolMerged 1 downto 0 In ctmi# 59..60 Fl
FilterMode 1 downto 0 In cfm# 82..83
tso cfm1
- Test TestMode 1 downto 0 In ttm# 6..7
tsi ScanEn In tse a cfm0
Scanin In tsi 46
tre5 ScanOut Out tso 45 codm
RamError 5 downto 0 Out te# 47..52
tred codc
tre3 Special ClkxClI In clk 62 codl
I: RstxRBI In rst 61 :I
tre2 VDD In vdd cfp
VSS In vss
[tret | =l
tre0 cmp
53 vss vdd
< allallellael|lalle * o g 5 g_ vl|IT|V||2||l] | 5
&|15]|Z|8]|2||2]|(3]|*||F||%||a||||a] ||| |S]|2]||R]|&|]|a
o||l= »
54 74

Figure D.3: Pin layout

1

-

©
S

75

Data Sheet of the “Real Time Stereo Vision Chip”

60

QOW (Zr¥8-0rd) 860/84-8d

Q3LV1d T3IMOIN 43N0 'MHL ‘NIN SIHONI O¥OIN 09 Q31V1d
@109 39 TIVHS V3V Q3ZITIVLIIN ANV VL3N g3sodX3 1wV ‘)

S3ION

dM
600" d

884 —89d NYdYI' OLOAM Uu Nivg | W JONVHO =
Exw_ mauma| NOILVIO4H0D V3000 | EREIIORN S
| Gyp—v VaI00M| | \ S
G00" ¥ MY S IWS =
be—oc-8] SA |17 0L A Bs00t) J319ava dIHO =2
IV A O | N | e | 03dVHS I, VA1 ¥8 I
r8—0rL
0=0
ﬁ_ (ONNOYD 0¥3Z) 'SAVAT ANV WOdA — voa
Q3LVI0SI 38 TIVHS VIYY HOVLLY 31 ONV V3WV T3S ‘€ Ve
‘AINO SAvd Q3ZITIVLIN SSANLY1Y “Z o s
“NIN
"¥3QYO ISYHOUNd a34103dS ISIMYIHLO SSTINN 1|2

v _AOTIV_d0
YVAOM ¢ Qv

2

ozog 0EL L

g 0L0° 8c0’
-3y 00 0¢0’
[c00 [T]

oroF 000°1=0CX0S0" d

NOLVZITIVIIN 3903

oo 550

NOILJO ONILYId
X3ANI' L'ON Nid

[v00" [£/]

2

2

0¢0’

C T
3 [BOL
Al

L10°

[39 G507

o o

N s

o o

s o0 F 05 008 ki

= || coo G20 < o0 F 0S 095 2l

wog 020 & w0 0S 715 A
a00F 080 200F 05 vl
sioF OS 0GL'L
owcF OS 06L°L

Figure D.4: 84-Pin JLCC Package Dimension

Bibliography

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]
[10]

E. E. Hemayed, A. Sandbek, A.G. Wassal, A. A. Farag, Investiga-
tion of stereo-based 3D surface reconstruction, CVIP Lab., University
of Louisville, Kentucky, Feb. 1997

Ramin Zabih, John Woodfill, Non-parametric Local Transforms for
Computing Visual Correspondence, Cornell University and Interval Re-
search Corporation

Zhengyou Zhang, A Stereovision System for a Planetary Rover: Cali-
bration, Correlation, Registration and Fusion, INRIA, Sophia Antipolis
Cedes, France, Apr 1996

Karsten Muehlmann, Dennis Maier, Juergen Hesser, Reinhard Maen-
ner: Calculationg Dense Disparity Maps from Color Stereo images, an
Efficient Implementation, Universitaet Mannheim

Kurt Konolige: Small Vision Systems: Hardware and Implementation.
SRI International, Menlo Park, Ca 94025

Jana Kostkova: Stereoscopic Matching: Problems and Solution, PhD
Thesis Proposal, center for machine perception, Czech Technical Uni-
versity, Sept. 2002

C. Lawrence Zitnick and Take Kanade, A Cooperative Algorithm for
Stereo Mathing and Occlusion Detection, IEEE transaction on pattern
analysis and machine intelligence, vol. 22, no. 7, July 2000,

Figure mutually occluded areas from
http://cmp.felk.cvut.cz/demos/Stereo/New/Matching /smm.html

http://www.ptgrey.com/products/triclopsSDK /index.html

SNR by C. Perra, M.Pinna, D.D. Giusto

62

BIBLIOGRAPHY

List of Figures

2.1
2.2
2.3
24

2.5

2.6

3.1

3.2

3.3

3.4

3.5

Two stereo pictures and a resulting displacement map
Partly occluded areas, as shownin [6]
Mutually occluded areas, as shown in [6] and [8]
Objects are no longer on the same horizontal axis on an non-
parallel setup
If the cameras are not well aligned in vertical direction, it may
lead to unacceptable stereo results [5].
The left pictures demostrate stereo results with radially dis-
torted input images. On the right, the effect was corrected
prior to the calculation [9]. L.

Correspondence function selection tree: A one-line Census
transform requires three on-chip image lines. All memory fig-
ures are doubled due to the presence of a left and a right image
channel. The figures grow by a factor of four if occlusion de-
tection by RL-LR (see 2.3.2) is applied as well. The memory
values are in “bytes”. L.
Block matching: The center of the block represents a virtual
pixel position that all further calculations relate to. The left-
to-right case (LR case) for occlusion detection works symmet-
rically.o
The top image illustrates the size of a reference block in rela-
tion to the input image. The bottom image shows the com-
plete region of 25 displacement positions where the scan block
is shifted over in search of the best match.
The top images show stereo input images. In the middle to
the left is a LR LSQ result image, next to a RL Census result
image. The bottom line shows the output of the merger unit
and and a postfiltered final output image (median filter). . . .
Stereo perspective: A virtual viewpoint in the middle of the
left and right image sources is created.

16

64 LIST OF FIGURES
3.6 a) Census transform for a single pixel. b) Transform applied
toa 3-10 pixel block. L. 20
4.1 There are six main modules 23
4.2 The intermodule protocol relies on the FrameSync and Pixel-
Sync control signals oL 24
4.3 Input buffer architecture 26
4.4 Input buffer FSM (simplified) 27
4.5 Procedure of finding the best match 29
4.6 The LR matches are delayed with an additional latency 32
4.7 Median Filter sorting network 37
D.1 Functional Block Diagram 95
D.2 Typical setup with two cameras, a controller, the SOM02w10
and a LSQ display L. 56
D3 Pinlayout 59
D.4 84-Pin JLCC Package Dimension 60

List of Tables

4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9

Al
A2

D.1

IO Interface of thechip 22
Input Buffer Module ports 25
LSQ Module ports 28
LSQ A is the stright forward solution using ripple carry adders,

LSQ B is the advanced version using a carry save architecture. 29

Census Module ports 30
Displacement Module ports 31
Merger Module portso 33
Merger Module configuration parameters 35
Output Filter Module ports 36
Command line parameters to “ReferenceModel.java” 41
Command line parameters to “ShowResponselmage.java” . . . 41
Specifications Lo 95

Index

algorithm, 13
constraints on, 13
development, 39
selection, 14, 16

assumption
continuity, 8
similarity, 4

binocular

setup, 3, 5, 9
BIST, 21
bit-true reference model, 39
block searching, 16, 23
built-in self test, 21

Census correspondence function, 14,
16
Census Module, 30
Census transform, 8, 14
chip size, 13
circular buffer
displacement buffer, 31
displacement module, 32
input buffer module, 26
clock frequency, 14
color vs. gray-scale image, 9, 14
continuity, 4
continuity assumption, 4
control path, 24
control signals, 21
core area, 13
correspondence function, 7, 14, 19,
23, 34

data flow oriented algorithm, 14

data uncertainty, 4
data-flow orientation, 21
depth, 3, 7

calculation, 1

map, 3
disparity, 3

map, 3
disparity map, 7, 8, 23
displacement, 1, 3, 9, 16, 19, 23,

25, 27

buffer, 31

calculation, 1

map, 1

module, 23, 31

feature based matching, 7
feature detection, 1
frame rate, 13
FrameSync, 21, 24

global methods, 7

Hamming distance, 14, 30
hopping, 27

image
border region, 24
width, 21
Input Buffer, 23, 25
intermodule protocol, 24
IO interface, 14, 21

left-right consistency check, 8
LineSync, 21
local method, 7

INDEX

67

LOG filter, 8

LR case, 8, 16, 18, 19, 24, 25, 31-33

LSQ correspondence function, 14,
16

Marr-Poggio-Grimson algorithm, 8
matching, 7
area based, 7
edge based, 7
quality, 16, 19
median filter, 8, 19
memory
components, 26
macro cell, 13
on-chip, 13
restrictions, 14
merger module, 23, 31, 33
merging function, 19
module level architecture, 23

no match, 32, 34
non-parallel projection, 9
non-parametric transform, 7, 20

occlusion, 5, 8
detection, 19, 33, 34
mutual, 5
partial, 5, 34

output filter, 19, 23

overall latency, 21

pads, 13

parallel projection, 9

perspective mapping, 18, 19, 23, 31
pixel cycle, 25, 26

pixel frequency, 14

PixelSync, 21, 24

post-filtering, 8

power consumption, 14

priority, 34

process UMC 0.25 pm, 13

radial distortion, 9

rank transform, 7

reference block, 16, 19, 25, 26
reference model (JAVA), 39
reflection, 4, 34

RL case, 8, 16, 18, 19, 24, 25, 31-33
row-based image processing, 14

scan
block, 16, 19, 25, 26
line, 7-9
path, 21

selective overwrite, 34

ShowResponselmage.java, 40

single function bit, 34

SNR, 7-9

structural ambiguity, 4, 5

testability, 21

TestMode signal, 21
tolerant combination, 33, 34
transparency, 4, 34

UMC 0.25 pm, 13
uniqueness, 4
uniqueness assumption, 4

verification, 39

